User menu

Strong consistency of nearest neighbor kernel regression estimation for stationary dependent samples

Bibliographic reference Lu, ZD ; Cheng, P. Strong consistency of nearest neighbor kernel regression estimation for stationary dependent samples. In: Science in China. Series A: Mathematics, Physics, Astronomy, Vol. 41, no. 9, p. 918-926 (1998)
Permanent URL
  1. Cheng. B., Tong. H., On consistent non-parametric order determination and chaos.J. R. S. S., 1992. B54: 427.
  2. Tjøstheim, D., Auestad, B., Non-parametric identification of nonlinear time series: selecting significant lags,JASA, 1994. 89: 1410.
  3. Tjøstheim, D., Nonlinear time series: a selective review,Scandinavian Journal of Statistics, 1994, 21: 97.
  4. Tong. H., A personal overview of nonlinear time series analysis from a chaos perspective (with discussion).Scandinavian Journal of Statistics, 1995, 22: 399.
  5. Hardle. W., Chen. R., Nonparametric time series, a selective review with examples.Invited Paper in Bulletin of 50th Session of ISI. Beijing, 1995.
  6. Lu. Z. D., Cheng, P., Distribution-free strong consistency for nonparametric kernel regression involving nonlinear time series.Journal of Statistical Planning and Inference, 1998. 65: 67.
  7. Robinson, P. M., Nonparametric estimators for time.series,J. Time Ser. Anal., 1983, 4: 185.
  8. Collomb. G., Hardle. W., Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observation,Stochastic Processes and Their Applications, 1986. 23: 77.
  9. Roussas, G. G., Nonparametric regression estimation under mixing conditions,Stochastic Procas. Appl., 1990, 36: 107.
  10. Truong, Y. M., Stone, C. J., Nonparametric function estimation involving time series,Ann. Statist., 1992, 20: 77.
  11. Masry. E., Tjøstheim, D., Nonparametric estimation and identification of nonlinear ARCH time series: strong convergence and asymptotic normality,Econometric Theory, 1995. 11: 258.
  12. Cheng, P., On strong consistency and convergence rate of improved kernel estimates for the regression function,Journal of System Science and Mathematical Sciences, 1983. 3. 304.
  13. Cheng. P., Strong consistency of the improved nearest neighbor estimates of regression functions.Kexue Tongbao (in Chinese). 1985. 30: 717.
  14. Loftsgaarden. D. O., Quesenberry, C. D., A nonparametric estimate of a multivariate density function,Ann. Math. Statist., 1965, 36: 1049.
  15. Boente, G., Fraiman. R., Consistency of a nonparametric estimate of a density function for dependent variables.J. Mult. Anal., 1988. 25: 90.
  16. Wheeden. R. L., Zygmund, A.,Measure and Integral. New York: Dekker. 1977.
  17. Bradley, R. C., Approximation theorem for strongly mixing random variables,Michigan Mathematical Journal. 1983. 30: 69.
  18. Boente, G., Fraiman. R., Robust nonparametric regression estimation for dependent observations.Ann. Statist., 1989. 17: 1242.
  19. Collomb. G., Estimation de la regression parla methode desk points les plus proches avec noyau: Quelques proprietes de convergence ponctuelle. Statistique nonparametrique asymptotique.Lecture Notes in Math., 1980. 821: 159.