Antoine, Jean-Pierre
[UCL]
Mahara, Isidore
[UCL]
We derive Galilean wavelets, by which we mean coherent states of the affine Galilei group, that is, the Galilei group extended by independent space and time dilations. The construction follows a general method based on square integrable group representations, possibly modulo a subgroup, i.e., on a homogeneous space of the underlying group. We also examine the restriction to the Schrodinger subgroup, which contains only dilations that leave invariant the Schrodinger and the heat equations. (C) 1999 American Institute of Physics. [S0022-2488(99)01111-1].
- Ali S. T., Ann. Inst. Henri Poincaré, 55, 857 (1991)
- Ali S.T., Antoine J.P., Gazeau J.P., Relativistic Quantum Frames, 10.1006/aphy.1993.1017
- TWAREQUE ALI S., ANTOINE J.-P., GAZEAU J.-P., MUELLER U.A., COHERENT STATES AND THEIR GENERALIZATIONS: A MATHEMATICAL OVERVIEW, 10.1142/s0129055x95000396
- Niederer U., Helv. Phys. Acta, 45, 802 (1972)
- Perroud M., Helv. Phys. Acta, 50, 233 (1977)
- Murenzi Romain, Robust object tracking in compressed image sequences, 10.1117/1.482661
- Bohnké G., Ann. Inst. Henri Poincaré, 54, 245 (1991)
- Levy‐Leblond Jean‐Marc, Galilei Group and Nonrelativistic Quantum Mechanics, 10.1063/1.1724319
- Voisin J., On Some Unitary Representations of the Galilei Group I. Irreducible Representations, 10.1063/1.1704689
- Aniello Paolo, Cassinelli Gianni, De Vito Ernesto, Levrero Alberto, Wavelet transforms and discrete frames associated to semidirect products, 10.1063/1.532479
- Gilmore Robert, Geometry of symmetrized states, 10.1016/0003-4916(72)90147-9
- Perelomov A. M., Coherent states for arbitrary Lie group, 10.1007/bf01645091
- Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, 10.1090/s0002-9947-1952-0047179-6
- Daubechies Ingrid, Grossmann A., Meyer Y., Painless nonorthogonal expansions, 10.1063/1.527388
- Kalisa C., Ann. Inst. Henri Poincaré, 59, 201 (1993)
Bibliographic reference |
Antoine, Jean-Pierre ; Mahara, Isidore. Galilean wavelets: Coherent states of the affine Galilei group. In: Journal of Mathematical Physics, Vol. 40, no. 11, p. 5956-5971 (1999) |
Permanent URL |
http://hdl.handle.net/2078.1/44085 |