User menu

An algebraic approach to discrete dilations. Application to discrete wavelet transforms

Bibliographic reference Antoine, Jean-Pierre ; Kouagou, Yébéni B. ; Lambert, Dominique ; Torrésani, B.. An algebraic approach to discrete dilations. Application to discrete wavelet transforms. In: Journal of Fourier Analysis and Applications, Vol. 6, no. 2, p. 113-141 (2000)
Permanent URL
  1. Ali, S.T., Antoine, J.P.., Gazeau, U.A. (1995). Coherent states and their generalizations: an overview.Rev. Math. Phys. 7, 1013–1104.
  2. Ascher, E. (1972). Extensions et cohomologie de groupes, Lecture Notes,Enseignement du troisième cycle de la physique en Suisse Romande (CICP).
  3. Baake, M. (1984). Structure and representations of the hyperoctahedral group.J. Math. Phys.,25, 3171–3182.
  4. Bernier, D., and Taylor, M. (1996). Wavelets and square integrable representations.SIAM J. Math. Anal.,27, 594–608.
  5. Bernuau, C. (1998). Wavelet bases associated to a self similar quasicrystal.J. Math. Phys.,39, 4213–4225.
  6. Brainerd, B., and Edwards, R.E. (1966). Linear operators which commutes with translations. I. Representation theorems.J. Austral. Math. Soc.,VI, 289–327.
  7. Carmona, R., Hwang, W.L., and Torrésani, B. (1998).Practical Time-Frequency Analysis: Wavelet and Gabor Transforms, with an Implementation in S Academic Press, San Diego, CA.
  8. Chui, C.K. (1992).An Introduction to Wavelets. Academic Press, San Diego, CA.
  9. Daubechies Ingrid, Ten Lectures on Wavelets, ISBN:9780898712742, 10.1137/1.9781611970104
  10. Flornes K., Grossmann A., Holschneider M., Torrésani B., Wavelets on Discrete Fields, 10.1006/acha.1994.1001
  11. Führ, H. (1966). Wavelet frames and admissibility in higher dimensions.J. Math. Phys.,37, 6353–6366.
  12. Gazeau, J.-P., Patera, J., and Pelantová, E. (1998). Tau-wavelets in the plane.J. Math. Phys.,39, 4201–4212.
  13. Hern√°ndez Eugenio, Weiss Guido, A First Course on Wavelets, ISBN:9780849382741, 10.1201/9781420049985
  14. Folland, G.B. (1995).A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL.
  15. Gröchenig Karlheinz, Aspects of Gabor analysis on locally compact abelian groups, Gabor Analysis and Algorithms (1998) ISBN:9781461273820 p.211-231, 10.1007/978-1-4612-2016-9_7
  16. Higgins, J.R. (1985). Five short stories about the cardinal series.Bull. Am. Math. Soc.,12, 45–89.
  17. Holschneider, M. (1995). Wavelet analysis over abelian groups.Applied Comput. Harmon. Anal.,2, 52–60.
  18. Holschneider, M. (1995).Wavelets: An Analysis Tool. Oxford University Press, Oxford.
  19. Holschneider, M., Kronland-Martinet, R., Morlet, J., and Tchamitchian, Ph. (1987). A real-time algorithm for signal analysis with the help of wavelet transform, inWavelets, Time-Frequency Methods and Phase Space, Combes, J.M., Grossmann, A., and Tchamitchian, Th., Eds., Springer-Verlag, Berlin, 286–297.
  20. Johnston, C.P. (1997). On the pseudodilation representations of Flornes, Grossmann, Holschneider, and Torrésani.J. Fourier Anal. Appl.,3, 377–385.
  21. Lang, S. (1997).Algebra, Addison-Wesley, Reading, MA.
  22. Mallat, S. (1998).A Wavelet Tour of Signal Processing, Academic Press, New York.
  23. Rudin, W. (1962).Fourier Analysis on Groups. Interscience Publ., New York.
  24. Shensa, M. (1993). Wedding the “à trous” and Mallat algorithms.IEEE Trans. Inf. Th.,40, 2464–2482.
  25. Steidl, G. (1994). Spline wavelets overℝ,ℤ,ℝ/Nℤ and ℤ/Nℤ, inWavelets, Theory, Algorithms and Applications, Chui, C.K., Montefusco, L., and Puccio, L., Eds., Academic Press, San Diego, CA.
  26. Torrésani, B. Ed. (1998). Special issue on Wavelets and Time-Frequency Analysis.J. Math. Phys.,39, August.
  27. Vetterli, M. and Kovačević, J. (1996).Wavelets and Sub-Band Coding, Prentice-Hall, Englewood Cliffs, NJ.
  28. Wickerhauser, M.V. (1994).Adapted Wavelet Analysis, from Theory to Software, A.K. Peter, Wellesley, MA.