User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Temporally stable coherent states for infinite well and Poschl-Teller potentials

  1. P�schl G., Teller E., Bemerkungen zur Quantenmechanik des anharmonischen Oszillators, 10.1007/bf01331132
  2. Scarf Frederick L., New Soluble Energy Band Problem, 10.1103/physrev.112.1137
  3. Li Hui, Kusnezov Dimitri, Group Theory Approach to Band Structure: Scarf and Lamé Hamiltonians, 10.1103/physrevlett.83.1283
  4. Rosen N., Morse Philip M., On the Vibrations of Polyatomic Molecules, 10.1103/physrev.42.210
  5. Bariev R Z, Finite-size corrections for the low-lying states of the integrable model with two- and three-particle interactions, 10.1088/0305-4470/25/5/010
  6. Alhassid Y, Gürsey F, Iachello F, Group theory approach to scattering, 10.1016/0003-4916(83)90244-0
  7. Frank Alejandro, Wolf Kurt Bernardo, Lie algebras for systems with mixed spectra. I. The scattering Pöschl–Teller potential, 10.1063/1.526559
  8. Klauder John R., Continuous‐Representation Theory. I. Postulates of Continuous‐Representation Theory, 10.1063/1.1704034
  9. Klauder John R, Coherent states for the hydrogen atom, 10.1088/0305-4470/29/12/002
  10. Gazeau Jean Pierre, Klauder John R, Coherent states for systems with discrete and continuous spectrum, 10.1088/0305-4470/32/1/013
  11. Jackson F. H., Messenger Math., 38, 62 (1909)
  12. Daskaloyannis C, Ypsilantis K, A deformed oscillator with Coulomb energy spectrum, 10.1088/0305-4470/25/15/023
  13. Solomon Allan I., A characteristic functional for deformed photon phenomenology, 10.1016/0375-9601(94)91038-3
  14. Carminati J., Shear‐free perfect fluids in general relativity. I. Petrov type N Weyl tensor, 10.1063/1.527446
  15. Hawking S. W., King A. R., McCarthy P. J., A new topology for curved space–time which incorporates the causal, differential, and conformal structures, 10.1063/1.522874
  16. TRAPANI C., QUASI *-ALGEBRAS OF OPERATORS AND THEIR APPLICATIONS, 10.1142/s0129055x95000475
  17. Seki Ryoichi, On Boundary Conditions for an Infinite Square-Well Potential in Quantum Mechanics, 10.1119/1.1986327
  18. Robinett R. W., Visualizing the collapse and revival of wave packets in the infinite square well using expectation values, 10.1119/1.19455
  19. Goodman Mark, Path integral solution to the infinite square well, 10.1119/1.12720
  20. Gesztesy F, Macdeo C, Streit L, An exactly solvable periodic Schrodinger operator, 10.1088/0305-4470/18/9/003
  21. Penson K. A., Solomon A. I., New generalized coherent states, 10.1063/1.532869
  22. Sixdeniers J-M, Penson K A, Solomon A I, Mittag-Leffler coherent states, 10.1088/0305-4470/32/43/308
  23. Sixdeniers J-M, Penson K A, On the completeness of coherent states generated by binomial distribution, 10.1088/0305-4470/33/14/319
  24. Barut A. O., Girardello L., New “Coherent” States associated with non-compact groups, 10.1007/bf01646483
  25. Nieto Michael Martin, Simmons L. M., Coherent States for General Potentials, 10.1103/physrevlett.41.207
  26. Aronstein David L., Stroud C. R., Fractional wave-function revivals in the infinite square well, 10.1103/physreva.55.4526
  27. Averbukh I.Sh., Perelman N.F., Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics, 10.1016/0375-9601(89)90943-2
  28. Kinzel W., Bilder elementarer Quantenmechanik, 10.1002/phbl.19950511215
  29. de Matos Filho R. L., Vogel W., Nonlinear coherent states, 10.1103/physreva.54.4560
  30. Großmann Frank, Rost Jan-Michael, Schleich Wolfgang P, Spacetime structures in simple quantum systems, 10.1088/0305-4470/30/9/004
  31. Bluhm Robert, Kostelecký V. Alan, Porter James A., The evolution and revival structure of localized quantum wave packets, 10.1119/1.18304
  32. Mandel L., Sub-Poissonian photon statistics in resonance fluorescence, 10.1364/ol.4.000205
  33. Fox Ronald F., Choi Mee Hyang, Generalized coherent states and quantum-classical correspondence, 10.1103/physreva.61.032107
  34. Crawford M. G. A., Temporally stable coherent states in energy-degenerate systems: The hydrogen atom, 10.1103/physreva.62.012104
  35. Bonneau Guy, Faraut Jacques, Valent Galliano, Self-adjoint extensions of operators and the teaching of quantum mechanics, 10.1119/1.1328351
Bibliographic reference Antoine, Jean-Pierre ; Gazeau, JP. ; Monceau, P ; Klauder, JR ; Penson, KA. Temporally stable coherent states for infinite well and Poschl-Teller potentials. In: Journal of Mathematical Physics, Vol. 42, no. 6, p. 2349-2387 (2001)
Permanent URL http://hdl.handle.net/2078.1/42732