Antoine, Jean-Pierre
[UCL]
Gazeau, JP.
Monceau, P
Klauder, JR
Penson, KA
This article is a direct illustration of a construction of coherent states which has been recently proposed by two of us (JPG and JK). We have chosen the example of a particle trapped in an infinite square-well and also in Poschl-Teller potentials of the trigonometric type. In the construction of the corresponding coherent states, we take advantage of the simplicity of the solutions, which ultimately stems from the fact they share a common SU(1,1) symmetry a la Barut-Girardello. Many properties of these states are then studied, both from mathematical and from physical points of view. (C) 2001 American Institute of Physics.
- P�schl G., Teller E., Bemerkungen zur Quantenmechanik des anharmonischen Oszillators, 10.1007/bf01331132
- Scarf Frederick L., New Soluble Energy Band Problem, 10.1103/physrev.112.1137
- Li Hui, Kusnezov Dimitri, Group Theory Approach to Band Structure: Scarf and Lamé Hamiltonians, 10.1103/physrevlett.83.1283
- Rosen N., Morse Philip M., On the Vibrations of Polyatomic Molecules, 10.1103/physrev.42.210
- Bariev R Z, Finite-size corrections for the low-lying states of the integrable model with two- and three-particle interactions, 10.1088/0305-4470/25/5/010
- Alhassid Y, Gürsey F, Iachello F, Group theory approach to scattering, 10.1016/0003-4916(83)90244-0
- Frank Alejandro, Wolf Kurt Bernardo, Lie algebras for systems with mixed spectra. I. The scattering Pöschl–Teller potential, 10.1063/1.526559
- Klauder John R., Continuous‐Representation Theory. I. Postulates of Continuous‐Representation Theory, 10.1063/1.1704034
- Klauder John R, Coherent states for the hydrogen atom, 10.1088/0305-4470/29/12/002
- Gazeau Jean Pierre, Klauder John R, Coherent states for systems with discrete and continuous spectrum, 10.1088/0305-4470/32/1/013
- Jackson F. H., Messenger Math., 38, 62 (1909)
- Daskaloyannis C, Ypsilantis K, A deformed oscillator with Coulomb energy spectrum, 10.1088/0305-4470/25/15/023
- Solomon Allan I., A characteristic functional for deformed photon phenomenology, 10.1016/0375-9601(94)91038-3
- Carminati J., Shear‐free perfect fluids in general relativity. I. Petrov type N Weyl tensor, 10.1063/1.527446
- Hawking S. W., King A. R., McCarthy P. J., A new topology for curved space–time which incorporates the causal, differential, and conformal structures, 10.1063/1.522874
- TRAPANI C., QUASI *-ALGEBRAS OF OPERATORS AND THEIR APPLICATIONS, 10.1142/s0129055x95000475
- Seki Ryoichi, On Boundary Conditions for an Infinite Square-Well Potential in Quantum Mechanics, 10.1119/1.1986327
- Robinett R. W., Visualizing the collapse and revival of wave packets in the infinite square well using expectation values, 10.1119/1.19455
- Goodman Mark, Path integral solution to the infinite square well, 10.1119/1.12720
- Gesztesy F, Macdeo C, Streit L, An exactly solvable periodic Schrodinger operator, 10.1088/0305-4470/18/9/003
- Penson K. A., Solomon A. I., New generalized coherent states, 10.1063/1.532869
- Sixdeniers J-M, Penson K A, Solomon A I, Mittag-Leffler coherent states, 10.1088/0305-4470/32/43/308
- Sixdeniers J-M, Penson K A, On the completeness of coherent states generated by binomial distribution, 10.1088/0305-4470/33/14/319
- Barut A. O., Girardello L., New “Coherent” States associated with non-compact groups, 10.1007/bf01646483
- Nieto Michael Martin, Simmons L. M., Coherent States for General Potentials, 10.1103/physrevlett.41.207
- Aronstein David L., Stroud C. R., Fractional wave-function revivals in the infinite square well, 10.1103/physreva.55.4526
- Averbukh I.Sh., Perelman N.F., Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics, 10.1016/0375-9601(89)90943-2
- Kinzel W., Bilder elementarer Quantenmechanik, 10.1002/phbl.19950511215
- de Matos Filho R. L., Vogel W., Nonlinear coherent states, 10.1103/physreva.54.4560
- Großmann Frank, Rost Jan-Michael, Schleich Wolfgang P, Spacetime structures in simple quantum systems, 10.1088/0305-4470/30/9/004
- Bluhm Robert, Kostelecký V. Alan, Porter James A., The evolution and revival structure of localized quantum wave packets, 10.1119/1.18304
- Mandel L., Sub-Poissonian photon statistics in resonance fluorescence, 10.1364/ol.4.000205
- Fox Ronald F., Choi Mee Hyang, Generalized coherent states and quantum-classical correspondence, 10.1103/physreva.61.032107
- Crawford M. G. A., Temporally stable coherent states in energy-degenerate systems: The hydrogen atom, 10.1103/physreva.62.012104
- Bonneau Guy, Faraut Jacques, Valent Galliano, Self-adjoint extensions of operators and the teaching of quantum mechanics, 10.1119/1.1328351
Bibliographic reference |
Antoine, Jean-Pierre ; Gazeau, JP. ; Monceau, P ; Klauder, JR ; Penson, KA. Temporally stable coherent states for infinite well and Poschl-Teller potentials. In: Journal of Mathematical Physics, Vol. 42, no. 6, p. 2349-2387 (2001) |
Permanent URL |
http://hdl.handle.net/2078.1/42732 |