Rignanese, Gian-Marco
[UCL]
Detraux, F
Gonze, Xavier
[UCL]
Pasquarello, A
Using the variational density-functional perturbation theory, we investigate the dynamical and dielectric properties of tetragonal zirconia (t-ZrO2). We obtain the phonon frequencies at the center of the Brillouin zone, the Born effective charge tensors, and the dielectric permittivity tensors. For all these quantities, a comparison is made with the related values in the cubic phase. The Born effective charge tensors are found to be quite anisotropic. The calculated phonon frequencies present a better agreement with the infrared and Raman experimental values than previous theoretical calculations. We propose symmetry assignments that solve the contradictions existing in the literature. The electronic and static dielectric permittivity constants are in relatively good agreement with experimental values. We perform a detailed analysis of the contribution of the various infrared-active modes to the static dielectric permittivity and explain its strong anisotropy.
- Advances in Ceramics (1988)
- Zirconia ’88: Advances in Zirconia Science and Technology (1989)
- Kalkur T.S., Lu Y.C., Electrical characteristics of ZrO2-based metal-insulator-semiconductor structures on p-Si, 10.1016/0040-6090(92)90122-r
- Hwang Cheol Seong, Kim Hyeong Joon, Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD, 10.1557/jmr.1993.1361
- Wilk G. D., Wallace R. M., Stable zirconium silicate gate dielectrics deposited directly on silicon, 10.1063/1.125673
- Wilk G. D., Wallace R. M., Anthony J. M., Hafnium and zirconium silicates for advanced gate dielectrics, 10.1063/1.371888
- Teufer G., The crystal structure of tetragonal ZrO2, 10.1107/s0365110x62003114
- ALDEBERT PIERRE, TRAVERSE JEAN-PIERRE, Structure and Ionic Mobility of Zirconia at High Temperature, 10.1111/j.1151-2916.1985.tb15247.x
- PERRY C. H., LIU D.-W., INGEL ROBERT P., Phase Characterization of Partially Stabilized Zirconia by Raman Spectroscopy, 10.1111/j.1151-2916.1985.tb10176.x
- Lawson Simon, Environmental degradation of zirconia ceramics, 10.1016/0955-2219(95)00035-s
- Negita K., Lattice vibrations and cubic to tetragonal phase transition in ZrO2, 10.1016/0001-6160(89)90289-7
- Negita Keishi, Takao Hiroshi, Condensations of phonons at the tetragonal to monoclinic phase transition in ZrO2, 10.1016/0022-3697(89)90495-2
- Mirgorodsky A. P., Smirnov M. B., Quintard P. E., Merle-Méjean T., Strain-induced destabilization of crystals: Lattice dynamics of the cubic-tetragonal phase transition inZrO2, 10.1103/physrevb.52.9111
- Mirgorodsky A. P., Smirnov M. B., Quintard P. E., Lattice-dynamical study of the cubic-tetragonal-monoclinic transformations of zirconia, 10.1103/physrevb.55.19
- Feinberg A., Perry C.H., Structural disorder and phase transitions in ZrO2-Y2O3 system, 10.1016/0022-3697(81)90032-9
- Bouvier P., Lucazeau G., Raman spectra and vibrational analysis of nanometric tetragonal zirconia under high pressure, 10.1016/s0022-3697(99)00242-5
- Pecharromán C., Iglesias J. E., Effective dielectric properties of packed mixtures of insulator particles, 10.1103/physrevb.49.7137
- Ghosez Ph., Michenaud J.-P., Gonze X., Dynamical atomic charges: The case ofABO3compounds, 10.1103/physrevb.58.6224
- Detraux F., Ghosez Ph., Gonze X., Long-Range Coulomb Interaction inZrO2, 10.1103/physrevlett.81.3297
- Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
- Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
- J.P. Perdew, Phys. Rev. B, 45, 13 (1992)
- Ceperley D. M., Alder B. J., Ground State of the Electron Gas by a Stochastic Method, 10.1103/physrevlett.45.566
- Teter Michael, Additional condition for transferability in pseudopotentials, 10.1103/physrevb.48.5031
- Monkhorst Hendrik J., Pack James D., Special points for Brillouin-zone integrations, 10.1103/physrevb.13.5188
- Gonze Xavier, Allan Douglas C., Teter Michael P., Dielectric tensor, effective charges, and phonons in α-quartz by variational density-functional perturbation theory, 10.1103/physrevlett.68.3603
- X. Gonze, Phys. Rev. B, 55, 10 (1997)
- Sugiyama Kazuhiko, Yoda Jun, Production ofYbH+by chemical reaction ofYb+in excited states withH2gas, 10.1103/physreva.55.r10
- Králik Balázs, Chang Eric K., Louie Steven G., Structural properties and quasiparticle band structure of zirconia, 10.1103/physrevb.57.7027
- Zhong W., King-Smith R. D., Vanderbilt David, Giant LO-TO splittings in perovskite ferroelectrics, 10.1103/physrevlett.72.3618
- Rignanese G.-M., Gonze X., Pasquarello Alfredo, First-principles study of structural, electronic, dynamical, and dielectric properties of zircon, 10.1103/physrevb.63.104305
- Lee Changyol, Gonze Xavier, Lattice dynamics and dielectric properties ofSiO2stishovite, 10.1103/physrevlett.72.1686
- C. Lee, Phys. Rev. B, 50, 13 (1994)
- X. Gonze, Phys. Rev. B, 50, 13 (1994)
- Giannozzi Paolo, de Gironcoli Stefano, Pavone Pasquale, Baroni Stefano, Ab initiocalculation of phonon dispersions in semiconductors, 10.1103/physrevb.43.7231
- ISHIGAME M., SAKURAI T., Temperature Dependence of the Raman Spectra of ZrO2, 10.1111/j.1151-2916.1977.tb15561.x
- Kim Dae-Joon, Jung Hyung-Jin, Yang In-Sang, Raman Spectroscopy of Tetragonal Zirconia Solid Solutions, 10.1111/j.1151-2916.1993.tb08341.x
- Hirata T., Asari E., Kitajima M., Infrared and Raman Spectroscopic Studies of ZrO2 Polymorphs Doped with Y2O3 or CeO2, 10.1006/jssc.1994.1160
- N. Kjerulf-Jensen, Proceedings of the 2nd European Solid Oxide Fuel Cell Forum (1996)
- Pecharromán C., Ocaña M., Serna C. J., Optical constants of tetragonal and cubic zirconias in the infrared, 10.1063/1.363218
- Mirgorodsky A.P., Smirnov M.B., Quintard P.E., Phonon spectra evolution and soft-mode instabilities of zirconia during the c–t–m transformation, 10.1016/s0022-3697(99)00005-0
- Liu D. W., Perry C. H., Ingel R. P., Infrared spectra in nonstoichiometric yttria‐stabilized zirconia mixed crystals at elevated temperatures, 10.1063/1.341839
- PHILLIPPI C. M., MAZDIYASNI K. S., Infrared and Raman Spectra of Zirconia Polymorphs, 10.1111/j.1151-2916.1971.tb12283.x
- French R. H., Glass S. J., Ohuchi F. S., Xu Y. -N., Ching W. Y., Experimental and theoretical determination of the electronic structure and optical properties of three phases ofZrO2, 10.1103/physrevb.49.5133
- Wood D. L., Nassau K., Refractive index of cubic zirconia stabilized with yttria, 10.1364/ao.21.002978
- Lanagan M.T., Yamamoto J.K., Bhalla A., Sankar S.G., The dielectric properties of yttria-stabilized zirconia, 10.1016/0167-577x(89)90047-5
- Dwivedi Anurag, Cormack A. N., A computer simulation study of the defect structure of calcia-stabilized zirconia, 10.1080/01418619008235554
- Goedecker S., Fast Radix 2, 3, 4, and 5 Kernels for Fast Fourier Transformations on Computers with Overlapping Multiply--Add Instructions, 10.1137/s1064827595281940
- Payne M. C., Teter M. P., Allan D. C., Arias T. A., Joannopoulos J. D., Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients, 10.1103/revmodphys.64.1045
- Gonze Xavier, Towards a potential-based conjugate gradient algorithm for order-Nself-consistent total energy calculations, 10.1103/physrevb.54.4383
Bibliographic reference |
Rignanese, Gian-Marco ; Detraux, F ; Gonze, Xavier ; Pasquarello, A. First-principles study of dynamical and dielectric properties of tetragonal zirconia. In: Physical Review B, Vol. 64, no. 13, p. 134301 (2001) |
Permanent URL |
http://hdl.handle.net/2078.1/42455 |