Jacques, Pascal
[UCL]
Ladrière, Jean
[UCL]
Delannay, Francis
[UCL]
The mechanical stability of dispersed retained austenite, i.e., the resistance of this austenite to mechanically induced martensitic transformation, was characterized at room temperature on two steels which differed by their silicon content. The steels had been heat treated in such a way that each specimen presented the same initial volume fraction of austenite and the same austenite grain size. Nevertheless, depending on the specimen, the retained austenite contained different amounts of carbon and was surrounded by different phases. Measurements of the variation of the volume fraction of untransformed austenite as a function of uniaxial plastic strain revealed that, besides the carbon content of retained austenite, the strength of the other phases surrounding austenite grains also influences the austenite resistance to martensitic transformation. The presence of thermal martensite together with the silicon solid-solution strengthening of the intercritical ferrite matrix can "shield" austenite from the externally applied load. As a consequence, the increase of the mechanical stability of retained austenite is not solely related to the decrease of the M-s temperature induced by carbon enrichment.
- J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38.
- T. Angel: J. Iron Steel Inst., 1954, pp. 165–74.
- V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. Am. Soc. Met., 1967, vol. 60, pp. 252–59.
- D.C. Ludwigson and J.A. Berger: J. Iron Steel Inst., 1969, pp. 63–69.
- Olson G. B., Cohen Morris, Kinetics of strain-induced martensitic nucleation, 10.1007/bf02672301
- H. Onodera, H. Goto, and I. Tamura: Proc. 1st JIM Int. Symp. New Aspects of Martensitic Transformations, Kobe, Japan, 1976, pp. 327–38.
- Olson G. B., Azrin M., Transformation behavior of TRIP steels, 10.1007/bf02659928
- Olson G. B., Cohen Morris, Stress-assisted isothermal martensitic transformation: Application to TRIP steels, 10.1007/bf02645934
- G.B. Olson: in Deformation, Processing and Structures, G. Krauss, ed. ASM, Metals Park, OH, 1982, pp. 391–424.
- R.G. Stringfellow, D.M. Parks, and G.B. Olson: Acta Metall. Mater., 1992, vol. 40 (7), pp. 1703–16.
- I. Tamura and C.M. Wayman: in Martensite, G.B. Olson and W.S. Owen, eds., ASM, Metals Park, OH, 1992, pp. 227–42.
- J.B. Leblond, J. Devaux, and J.C. Devaux: Int. J. Plasticity, 1989, vol. 5, pp. 551–72.
- F. Marketz and F.D. Fischer: Metall. Trans. A, 1995, vol. 26A, pp. 267–78.
- C.L. Magee and H.W. Paxton: Trans. TMS-AIME, 1968, vol. 242, pp. 1741–49.
- G.W. Greenwood and R.H. Johnson: Proc. R. Soc. London, Ser. A, 1965, vol. 283, pp. 403–22.
- D. Fahr: Metall. Trans., 1971, vol. 2, pp. 1883–92.
- D. Bhandarkar, V.F. Zackay, and E.R. Parker: Metall. Trans., 1972, vol. 3, pp. 2619–31.
- R.B.G. Yeo: Trans. TMS-AIME, 1963, vol. 227, pp. 884–90.
- G.R. Chanani, V.F. Zackay, and E.R. Parker: Metall. Trans., 1971, vol. 2, pp. 133–39.
- Sakuma Yasuharu, Matsumura Osamu, Akisue Osamu, Influence of C Content and annealing Temperature on Microstructure and Mechanical Properties of 400.DEG.C. Transformed Steel Containing Retained Austenite., 10.2355/isijinternational.31.1348
- O. Matsumura, Y. Sakuma, and H. Takechi: Scripta Metall., 1987, vol. 21, pp. 1301–06.
- Sakuma Yasuharu, Matlock David K., Krauss George, Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part I. transformation, microstructure, and room-temperature mechanical properties, 10.1007/bf02665053
- Sugimoto Koh-ichi, Usui Noboru, Kobayashi Mitsuyuki, Hashimoto Shun-ichi, Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels., 10.2355/isijinternational.32.1311
- W.C. Jeong, D.K. Matlock, and G. Krauss: Mater. Sci. Eng. A, 1993, vol. 165, pp. 1–8.
- H.K.D.H. Bhadeshia: Bainite in Steels, The Institute of Materials, London, 1992, pp. 61–87.
- Bhadeshia H. K. D. H., Edmonds D. V., The bainite transformation in a silicon steel, 10.1007/bf02658309
- Tsukatani Ichiro, Hashimoto Shun'ichi, Inoue Tsuyoshi, Effects of Silicon and Manganese Addition on Mechanical Properties of High-strength Hot-rolled Sheet Steel Containing Retained Austenite., 10.2355/isijinternational.31.992
- Matsumura Osamu, Sakuma Yasuharu, Ishii Yoshio, Zhao Jinfu, Effect of Retained Austenite on Formability of High Strength Sheet Steels., 10.2355/isijinternational.32.1110
- Sakuma Yasuharu, Matlock David K., Krauss George, Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part II. effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation, 10.1007/bf02665054
- Itami Atsushi, Takahashi Manabu, Ushioda Kosaku, Plastic Stability of Retained Austenite in the Cold-rolled 0.14%C-1.9%Si-1.7%Mn Sheet Steel., 10.2355/isijinternational.35.1121
- Sugimoto Koh-ichi, Misu Masahiro, Kobayashi Mitsuyuki, Shirasawa Hidenori, Effects of Second Phase Morphology on RetainedAustenite Morphology and Tensile Properties in a TRIP-aided Dual-phase Steel Sheet., 10.2355/isijinternational.33.775
- A. Itami, M. Takahashi, and K. Ushioda: Proc. Symp. High-Strength Steels for Automotive Industry, C.E. Slater, Baltimore, MD, 1994, pp. 245–54.
- P. Jacques, X. Cornet, P. Harlet, J. Ladrière, and F. Delannay: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2383–93.
- P. Jacques, K. Eberle, P. Harlet, and F. Delannay: Proc. 40th Mechanical Working & Steel Processing Conf., Pittsburgh, PA, Oct, 25–28 1998, ISS, Warrendale, PA, pp. 239–50.
- Jacques P. J., Girault E., Harlet Ph., Delannay F., The Developments of Cold-rolled TRIP-assisted Multiphase Steels. Low Silicon TRIP-assisted Multiphase Steels., 10.2355/isijinternational.41.1061
- G.R. Speich: in Fundamentals of Dual Phase Steels, R.A. Kot and B.L. Bramfitt, eds., TMS-AIME, Warrendale, PA, 1981, pp. 3–45.
- E. Girault, P. Jacques, K. Mols, P. Harlet, J. van Humbeeck, E. Aernoudt, and F. Delannay: Mater. Characterization, 1998, vol. 40 (2), pp. 111–18.
- Jacques P, Girault E, Catlin T, Geerlofs N, Kop T, van der Zwaag S, Delannay F, Bainite transformation of low carbon Mn–Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention, 10.1016/s0921-5093(99)00331-7
- D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.
- C.L. Magee: Metall. Trans., 1971, vol. 2, pp. 2419–25.
- G.N. Haidemenopoulos, G.B. Olson, and M. Cohen: Proc. 34th Sagamore Army Materials Research Conf., Lake George, New York, NY, U.S. Government Printing Office, 1987, pp. 549–93.
- Sakuma Yasuharu, Matsumura Osamu, Takechi Hiroshi, Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions, 10.1007/bf02656816
- Rudiono and Y. Tomota: Acta Mater., 1997, vol. 45 (5), pp. 1923–29.
- G.J. Weng: J. Mech. Phys. Solids, 1990, vol. 38, pp. 419–41.
- Goel Naresh C., Sangal Sandeep, Tangri Kris, A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite: Part I. derivation of flow curve equations, 10.1007/bf02662402
- B. Karlsson and B. Sundström: Mater. Sci. Eng. A, 1974, vol. 16, pp. 161–66.
- M.H. Poech and H.F. Fischmeister: Acta Metall., 1992, vol. 40 (3), pp. 487–94.
- Q. Furnemont, M. Kempf, P. Jacques, and M. Goken: Mater. Sci. Eng. A, in press.
- G. Bao, J.W. Hutchinson, and R.M. McMeeking: Mech. Mater., 1991, vol. 12, pp. 85–94.
- P. Jacques, Q. Furnemont, T. Pardoen, and F. Delannay: Acta Mater., 2001, vol. 49 (1), pp. 139–52.
- M. Hillert: in Phase Equilibria, Phase Diagrams and Phase Transformations, M. Hillert, ed., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 348–67.
- F.B. Pickering: Materials Science and Technology—Vol. 7: Constitution and Properties of Steels, F.B. Pickering, ed., VCH Publ., Weinheim, 1992, pp. 41–94.
- F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers, London, 1978.
- A.R. Marder: in Formable HSLA and Dual-Phase Steels, A.T. Davenport, ed., TMS-AIME, Warrendale, PA, 1977, pp. 87–98.
- Q.A. Chen, R. Kaspar, and O. Pawelski: Z. Metallkd., 1985, vol. 76, pp. 348–52.
- B.W. Mott: Micro-Indentation Hardness Testing, Butterworth and Co., London, 1956, pp. 1–15.
- G.F. Vander Voort: Metallography: Principles and Practice, McGraw-Hill, New York, NY, 1984, pp. 334–83.
- W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 5–26.
- Sugden A. A. B., Bhadeshia H. K. D. H., A model for the strength of the As-deposited regions of steel weld metals, 10.1007/bf02674034
- F.B. Pickering: in Hardenability Concepts with Applications to Steel, DV. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1977, pp. 179–225.
- J. Aranzabal, I. Gutierrez, J.M. Rodriguez-Ibabe, and J.J. Urcola: Metall. Trans. A, 1997, vol. 28A, pp. 1143–56.
- Chang L. C., Bhadeshia H. K. D. H., Austenite films in bainitic microstructures, 10.1179/026708395790165462
- H.K.D.H. Bhadeshia and D.V. Edmonds: Acta Metall., 1980, vol. 28, pp. 1265–73.
Bibliographic reference |
Jacques, Pascal ; Ladrière, Jean ; Delannay, Francis. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. In: Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, Vol. 32, no. 11, p. 2759-2768 (2001) |
Permanent URL |
http://hdl.handle.net/2078.1/42428 |