User menu

Fully symbolic generation of complex multibody models

Bibliographic reference Fisette, Paul ; Postiau, T ; Sass, L. ; Samin, Jean-Claude. Fully symbolic generation of complex multibody models. In: Mechanics of Structures and Machines, Vol. 30, no. 1, p. 31-82 (2002)
Permanent URL
  1. Nemeth I., CIRP J. Manuf. Syst., 30, 62 (2000)
  2. MS1 Version 5 (1999)
  3. Papadopoulos E., Mu B., Frenette R., Modeling and identification of an electrohydraulic articulated forestry machine, 10.1109/robot.1997.620016
  4. SAMTECH, Module d’Analyse de Mécanismes Flexibles Mecano (1994)
  5. Géradin M., Mechanical Vibrations — Theory and Application to Structural Dynamics (1994)
  6. KANE T. R., RYAN R., BANERJEE A. K., Dynamics of a cantilever beam attached to a moving base, 10.2514/3.20195
  7. Valembois R. E., Fisette P., Samin J. C., 10.1023/a:1008204330035
  8. Shi P., 10.1023/a:1026433909962
  9. Postiau T., Veh. Syst. Dyn. (2002)
  10. Fisette P., Ph.D thesis (1994)
  11. Raucent B., Campion G., Bastin G., Samin J.C., Willems P.Y., Identification of the barycentric parameters of robot manipulators from external measurements, 10.1016/0005-1098(92)90155-9
  12. Zatsiorsky V., Biomechanics of Human Movement: Applications in Rehabilitation, Sports and Ergonomics, 186 (1990)
  13. Hatze H., A mathematical model for the computational determination of parameter values of anthropomorphic segments, 10.1016/0021-9290(80)90171-2
  14. Chenut X., Multibody Syst. Dyn. (2002)
  15. Renaud, M. Quasi-Minimal Computation of the Dynamic Model of a Robot Manipulator Utilizing the Newton–Euler Formalism and the Notion of Augmented Body. IEEE International Conference on Robotics and Automation. Raleigh, North Carolina. pp.1677–1682.
  16. Maes P., Samin J.-C., Willems P.-Y., Linearity of Multibody Systems with Respect to Barycentric Parameters: Dynamics and Identification Models Obtained by Symbolic Generation, 10.1080/15397738909412817
  17. Wittenburg Jens, Dynamics of Systems of Rigid Bodies, ISBN:9783322909435, 10.1007/978-3-322-90942-8
  18. Sheu Shih-Ying, Walker Michael W., Identifying the Independent Inertial Parameter Space of Robot Manipulators, 10.1177/027836499101000606
  19. Gautier M., Numerical calculation of the base inertial parameters of robots, 10.1002/rob.4620080405
  20. Fisette P., Z. Angew. Math. Mech. (ZAMM), 3, 283 (1996)
  21. Fisette P., Raucent B., Samin J. C., Minimal dynamic characterization of tree-like multibody systems, 10.1007/bf01833299
  22. Raucent B., Robot Calibration, 197 (1993)
  24. Fisette P., Johnson D.A., Samin J.C., A fully symbolic generation of the equations of motion of multibody systems containing flexible beams, 10.1016/s0045-7825(96)01127-9
  25. Géradin M., Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, 233 (1993)
  26. Wehage R. A., Haug E. J., Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems, 10.1115/1.3256318
  27. Luh J. Y. S., Walker M. W., Paul R. P. C., On-Line Computational Scheme for Mechanical Manipulators, 10.1115/1.3149599
  28. Fisette P., Samin J. C., Symbolic generation of large multibody system dynamic equations using a new semi-explicit Newton/Euler recursive scheme, 10.1007/bf00795220
  29. Schwertassek R., Real-Time Integration Methods for Mechanical System Simulation, 69 (1989)
  30. ROBOTRAN: Centre for Research in Mechatronics, UCL: Louvain-la-Neuve, Belgium, 2001.
  31. Piedboeuf, J. C. Symbolic Manipulation of Flexible Manipulators. AAS/AIAA Astrodynamics Specialist Conference. Halix, Canada. pp.AAS 95–357.
  32. Maes P., Multibody System Handbook, 246 (1990)
  33. Shi Pengfei, McPhee John, 10.1023/a:1009841017268
  34. Kreuzer E., Schiehlen W., NEWEUL — Software for the Generation of Symbolical Equations of Motion, Multibody Systems Handbook (1990) ISBN:9783642509971 p.181-202, 10.1007/978-3-642-50995-7_12
  35. Sayers M. W., Multibody Computer Codes in Vehicle System Dynamics, 53 (1993)
  36. Schiehlen W., Multibody Systems Handbook (1989)