User menu

Reconstitution of a disulfide isomerization system

Bibliographic reference Collet, Jean-François ; Riemer, Jan ; Bader, Martin ; Bardwell, James. Reconstitution of a disulfide isomerization system. In: Journal of Biological Chemistry, Vol. 277, no. 30, p. 26886-26892 (2002)
Permanent URL
  1. Collet Jean-Francois, Bardwell James C. A., Oxidative protein folding in bacteria : Oxidative protein folding in bacteria, 10.1046/j.1365-2958.2002.02851.x
  2. Rietsch A., Belin D., Martin N., Beckwith J., An in vivo pathway for disulfide bond isomerization in Escherichia coli, 10.1073/pnas.93.23.13048
  3. Krupp Rebecca, Chan Cecilia, Missiakas Dominique, DsbD-catalyzed Transport of Electrons across the Membrane ofEscherichia coli, 10.1074/jbc.m009500200
  4. Katzen Federico, Beckwith Jon, Transmembrane Electron Transfer by the Membrane Protein DsbD Occurs via a Disulfide Bond Cascade, 10.1016/s0092-8674(00)00180-x
  5. Goldstone D., Haebel P. W., Katzen F., Bader M. W., Bardwell J. C. A., Beckwith J., Metcalf P., DsbC activation by the N-terminal domain of DsbD, 10.1073/pnas.171315498
  6. Bader M. W., Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA, 10.1093/emboj/20.7.1555
  7. Shao Feng, Bader Martin W., Jakob Ursula, Bardwell James C. A., DsbG, a Protein Disulfide Isomerase with Chaperone Activity, 10.1074/jbc.275.18.13349
  8. Ellman George L., Tissue sulfhydryl groups, 10.1016/0003-9861(59)90090-6
  9. Åslund Fredrik, Berndt Kurt D., Holmgren Arne, Redox Potentials of Glutaredoxins and Other Thiol-Disulfide Oxidoreductases of the Thioredoxin Superfamily Determined by Direct Protein-Protein Redox Equilibria, 10.1074/jbc.272.49.30780
  10. Zapun Andre, Bardwell James C. A., Creighton Thomas E., The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo, 10.1021/bi00070a016
  11. Bardwell James C.A., McGovern Karen, Beckwith Jon, Identification of a protein required for disulfide bond formation in vivo, 10.1016/0092-8674(91)90532-4
  12. Grauschopf Ulla, Winther Jakob R., Korber Philipp, Zander Thomas, Dallinger Petra, Bardwell James C.A., Why is DsbA such an oxidizing disulfide catalyst?, 10.1016/0092-8674(95)90210-4
  13. Metcalf Peter, McCarthy Andrew A., Haebel Peter W., Törrönen Anneli, Rybin Vladimir, Baker Edward N., 10.1038/73295
  14. Sun Xiu-xia, Wang Chih-chen, The N-terminal Sequence (Residues 1–65) Is Essential for Dimerization, Activities, and Peptide Binding ofEscherichia coliDsbC, 10.1074/jbc.m002406200
  15. Missiakas, EMBO J., 14, 3415 (1995)
  16. Gordon Euan H. J., Page M. Dudley, Willis Anthony C., Ferguson Stuart J., Escherichia coli DipZ: anatomy of a transmembrane protein disulphide reductase in which three pairs of cysteine residues, one in each of three domains, contribute differentially to function : Transmembrane protein-disulphide reductase, 10.1046/j.1365-2958.2000.01796.x
  17. Chung Jenny, Chen Thomas, Missiakas Dominique, Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm, 10.1046/j.1365-2958.2000.01778.x
  18. Stewart E. J., Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli, 10.1093/emboj/18.21.5963