Abstract |
: |
Given a game and a dynamics on the space of strategies it is possible to associate to any component of Nash equilibria, an integer, this is the index, see Ritzberger (1994). This number gives useful information on the equilibrium set and in particular on its stability properties under the given dynamics. We prove that indices of components always coincide with their local degrees for the projection map from the Nash equilibrium correspondence to the underlying space of games, so that essentially all dynamics have the same indices. This implies that in many cases the asymptotic properties of equilibria do not depend on the choice of dynamics, a question often debated in recent litterature. In particular many equilibria are asymptotically unstable for any dynamics. Thus the result establishes a further link between the theory of learning and evolutionary dynamics, the theory of equilibrium refinements and the geometry of Nash equilibria.
The proof holds for very general situations that include not only any number of players and strategies but also general equilibrium settings and games with a continuum of pure strategies such as Shapley-Shubik type games, this case will be studied in a forthcoming paper. |