User menu

Density and unique decomposition theorems for the lattice of cellular classes

Bibliographic reference Félix, Yves ; Parent, PE. Density and unique decomposition theorems for the lattice of cellular classes. In: Israel Journal of Mathematics, Vol. 136, p. 317-351 (2003)
Permanent URL
  1. H. J. Baues,Rationale Homotopietypen, Manuscripta Mathematica20 (1977), 119–131.
  2. A. K. Bousfield,Localization of spaces with respect to homology, Topology14 (1975), 133–150.
  3. W. Chachólski,Closed classes, inProceedings of the Conference on Algebraic Topology, Barcelona (1994), Progress in Mathematics136, Birkhauser, Boston, 1996, pp. 95–118.
  4. W. Chachólski,On the functors CW A and P A , Duke Mathematical Journal84 (1996), 599–631.
  5. W. Chachólski, P. E. Parent and D. Stanley,Cellular generators, Proceedings of the American Mathematical Society, to appear.
  6. W. Chachólski, P. E. Parent and D. Stanley,Cellular classes: lifting degeneracies within a Bousfield class, in preparation.
  7. W. Chachólski, P. E. Parent and D. Stanley,Building and a partial order isomorphic to [0, 1], Private communication, January 2001.
  8. Farjoun Emmanuel Dror, Cellular Spaces, Null Spaces and Homotopy Localization, ISBN:9783540606048, 10.1007/bfb0094429
  9. Y. Flix, S. Halperin, C. Jacobson, C. Löfvall and J.-C. Thomas,The radical of the homotopy Lie algebra, American Journal of Mathematics110 (1988), 301–322.
  10. Y. Felix, S. Halperin and J.-C. Thomas,Rational Homotopy Theory, Graduate Texts in Mathematics 205, Springer-Verlag, Berlin, 2000.
  11. S. Halperin,Finiteness in the minimal models of Sullivan, Transactions of the American Mathematical Society230 (1977), 173–199.
  12. Halperin S., Lemaire J. -m., Suites inertes dans les algèbres de Lie grasuées. ("Autopsie d'un meurtre II")., 10.7146/math.scand.a-12190
  13. S. Halperin and J. Stasheff,Obstructions to homotopy equivalences, Advances in Mathematics32 (1979), 233–279.
  14. K. Hess,The rational homotopy algebra and cellular type, preprint, 2000.
  15. K. Hess and P.-E. Parent,Emergence of the Witt group in the cellular lattice of rational spaces, Transactions of the American Mathematical Society354 (2002), 4571–4583.
  16. M. J. Hopkins and J. H. Smith,Nilpotency and stable homotopy II, Annals of Mathematics148 (1998), 1–49.
  17. Humphreys James E., Linear Algebraic Groups, ISBN:9781468494457, 10.1007/978-1-4684-9443-3
  18. I. James,On category in the senes of Lusternik-Schnirelmann, Topology17 (1978), 331–348.
  19. I. Niven, H. S. Zuckerman and H. L. Montgomery,An Introduction to the Theory of Numbers, 5th edition, John Wiley and Sons Inc., New York, 1991.
  20. D. Quillen,Rational homotopy theory, Annals of Mathematics9 (1969), 205–295.
  21. D. Sullivan,Infinitesimal computations in topology, Publications Mathématiques de l’Institut des Hautes Études Scientifiques47 (1977), 269–331.
  22. Tanré Daniel, Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, ISBN:9783540127260, 10.1007/bfb0071482
  23. Whitehead George W., Elements of Homotopy Theory, ISBN:9781461263203, 10.1007/978-1-4612-6318-0