User menu

Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons

Bibliographic reference Wintjens, René ; Noël, Christophe ; May, Alex ; Gerbod, Delphine ; Dufernez, Fabienne ; et. al. Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. In: Journal of Biological Chemistry, Vol. 279, no. 10, p. 9248-9254 (2004)
Permanent URL
  1. McCord Joe M., Fridovich Irwin, Superoxide dismutase: The first twenty years (1968–1988), 10.1016/0891-5849(88)90109-8
  2. Jackson S.M.J., Cooper J.B., 10.1023/a:1009238214394
  3. Parker M.W., Blake C.C.F., Barra D., Bossa F., Schinina M.E., Bannister W.H., Bannister J.V., Structural identity between the iron- and manganese-containing superoxide dismutases, 10.1093/protein/1.5.393
  4. Parker Michael W., Blake Colin C.F., Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures, 10.1016/0014-5793(88)81160-8
  5. Biochem. Soc. Trans., 5, 1533 (1977)
  6. Ose Dennis E., Fridovich Irwin, Manganese-containing superoxide dismutase from Escherichia coli: Reversible resolution and metal replacements, 10.1016/0003-9861(79)90628-3
  7. J. Biol. Chem., 266, 303 (1991)
  8. Yamakura Fumiyuki, Kobayashi Kazuo, Ue Harumi, Konno Michiko, The pH-Dependent Changes of the Enzymic Activity and Spectroscopic Properties of Iron-Substituted Manganese Superoxide Dismutase. A Study on the Metal-Specific Activity of Mn-Containing Superoxide Dismutase, 10.1111/j.1432-1033.1995.tb20191.x
  9. Whittaker Mei M., Whittaker James W., Mutagenesis of a Proton Linkage Pathway inEscherichia coliManganese Superoxide Dismutase†, 10.1021/bi9704212
  10. Edward Ross A., Whittaker Mei M., Whittaker James W., Jameson Geoffrey B., Baker Edward N., Distinct Metal Environment in Fe-Substituted Manganese Superoxide Dismutase Provides a Structural Basis of Metal Specificity, 10.1021/ja981072h
  11. Vance C. K., Miller A.-F., A Simple Proposal That Can Explain the Inactivity of Metal-Substituted Superoxide Dismutases, 10.1021/ja972060j
  12. Fridovich Irwin, Superoxide Radical and Superoxide Dismutases, 10.1146/
  13. HIRAOKA B. Yukihiro, YAMAKURA Fumiyuki, SUGIO Shigetoshi, NAKAYAMA Koji, A change of the metal-specific activity of a cambialistic superoxide dismutase from Porphyromonas gingivalis by a double mutation of Gln-70 to Gly and Ala-142 to Gln, 10.1042/0264-6021:3450345
  14. Vance Carrie K., Miller Anne-Frances, Novel Insights into the Basis forEscherichia coliSuperoxide Dismutase's Metal Ion Specificity from Mn-Substituted FeSOD and Its Very HighEm†, 10.1021/bi0113317
  15. Kardinahl S., Schmidt C.L., Petersen A., Schäfer G., Isolation, characterization and crystallization of an iron-superoxide dismutase from the crenarchaeonSulfolobus acidocaldarius, 10.1111/j.1574-6968.1996.tb08136.x
  16. J. Biol. Chem., 261, 9361 (1986)
  17. Biochem. Mol. Biol. Int., 36, 233 (1995)
  18. J. Bacteriol., 181, 4509 (1999)
  19. Chen Huai-Yang, Hu Rong-Gui, Wang Bao-Zhong, Chen Wen-Feng, Liu Wang-Yi, Schröder Werner, Frank Peter, Ulbrich Norbert, Structural studies of an eukaryotic cambialistic superoxide dismutase purified from the mature seeds of camphor tree, 10.1016/s0003-9861(02)00299-0
  20. Tabares L. C., Bittel C., Carrillo N., Bortolotti A., Cortez N., The Single Superoxide Dismutase of Rhodobacter capsulatus Is a Cambialistic, Manganese-Containing Enzyme, 10.1128/jb.185.10.3223-3227.2003
  21. Altschul S, Basic Local Alignment Search Tool, 10.1006/jmbi.1990.9999
  22. Felsenstein, J. (1995) PHYLIP (Phylogeny Inference Package) Version 3.57c, Dept. of Genetics, University of Washington, Seattle, WA.
  23. Klug-Roth Dina., Fridovich Irwin., Rabani Joesph., Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase, 10.1021/ja00790a007
  24. Jones David T., Taylor William R., Thornton Janet M., The rapid generation of mutation data matrices from protein sequences, 10.1093/bioinformatics/8.3.275
  25. Boutonnet Nathalie S., Rooman Marianne J., Ochagavia Maria-Elena, Richelle Jean, Wodak Shoshana J., Optimal protein structure alignments by multiple linkage clustering: application to distantly related proteins, 10.1093/protein/8.7.647
  26. Romesburg, H. C. (1984) Cluster Analysis for Researchers, Lifetime Learning Publications, Belmont, CA
  27. Lanyon Scott M., Detecting Internal Inconsistencies in Distance Data, 10.2307/2413204
  28. May Alex C.W., Toward more meaningful hierarchical classification of protein three-dimensional structures, 10.1002/(sici)1097-0134(19991001)37:1<20::aid-prot3>;2-v
  29. May Alex CW, A cautionary note on interpretation of hierarchical classifications of protein folds, 10.1016/s0969-2126(99)80168-3
  30. Comput. Appl. Sci., 12, 357 (1996)
  31. Kabsch Wolfgang, Sander Christian, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, 10.1002/bip.360221211
  32. McDonald Ian K., Thornton Janet M., Satisfying Hydrogen Bonding Potential in Proteins, 10.1006/jmbi.1994.1334
  33. J. Mol. Biol., 302, 395 (2000)
  34. Hubbard, S. J. (1992) NACCESS Program, University College, London
  35. McAdam M E, Fox R A, Lavelle F, Fielden E M, A pulse-radiolysis study of the manganese-containing superoxide dismutase fromBacillus stearothermophilus. A kinetic model for the enzyme action, 10.1042/bj1650071
  36. Ridley, M. (1996) Evolution, 2nd Ed., Blackwell Science, Cambridge, MA
  37. Lim Jae-Hwan, Yu Yeon Gyu, Han Ye Sun, Cho Seung-je, Ahn Byung-Yoon, Kim Sung-Hou, Cho Yunje, The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 å resolution: structural basis for thermostability, 10.1006/jmbi.1997.1105
  38. Whittaker Mei M., Whittaker James W., A Glutamate Bridge Is Essential for Dimer Stability and Metal Selectivity in Manganese Superoxide Dismutase, 10.1074/jbc.273.35.22188
  39. Edwards Ross A., Whittaker Mei M., Whittaker James W., Baker Edward N., Jameson Geoffrey B., Removing a Hydrogen Bond in the Dimer Interface ofEscherichia coliManganese Superoxide Dismutase Alters Structure and Reactivity†,‡, 10.1021/bi002403h
  40. Lah Myoung S., Dixon Melinda M., Pattridge Katherine A., Stallings William C., Fee James A., Ludwig Martha L., Structure-function in Escherichia coli iron superoxide dismutase: Comparisons with the manganese enzyme from Thermus thermophilus, 10.1021/bi00005a021
  41. Wintjens René T., Rooman Marianne J., Wodak Shoshana J., Automatic Classification and Analysis of αα-Turn Motifs in Proteins, 10.1006/jmbi.1996.0020
  42. Wintjens R., Wodak S. J., Rooman M., Typical interaction patterns in alphabeta and betaalpha turn motifs, 10.1093/protein/11.7.505
  43. Lévêque Vincent J.-P., Stroupe M. Elizabeth, Lepock James R., Cabelli Diane E., Tainer John A., Nick Harry S., Silverman David N., Multiple Replacements of Glutamine 143 in Human Manganese Superoxide Dismutase:  Effects on Structure, Stability, and Catalysis†, 10.1021/bi9929958
  44. Edwards Ross A., Whittaker Mei M., Whittaker James W., Baker Edward N., Jameson Geoffrey B., Outer Sphere Mutations Perturb Metal Reactivity in Manganese Superoxide Dismutase†,‡, 10.1021/bi0018943
  45. Bull Christopher, Fee James A., Steady-state kinetic studies of superoxide dismutases: properties of the iron containing protein from Escherichia coli, 10.1021/ja00297a040
  46. Hunter Thérèse, Bannister Joe V., Hunter Gary J., Thermostability of manganese- and iron-superoxide dismutases from Escherichia coli is determined by the characteristic position of a glutamine residue : Active-site glutamines in SODs, 10.1046/j.1432-1033.2002.03200.x
  47. Cabelli Diane E., Guan Yue, Leveque Vincent, Hearn Amy S., Tainer John A., Nick Harry S., Silverman David N., Role of Tryptophan 161 in Catalysis by Human Manganese Superoxide Dismutase†, 10.1021/bi9909142
  48. Yamakura Fumiyuki, Sugio Shigetoshi, Hiraoka B. Yukihiro, Ohmori Daijiro, Yokota Takehiro, Pronounced Conversion of the Metal-Specific Activity of Superoxide Dismutase fromPorphyromonas gingivalisby the Mutation of a Single Amino Acid (Gly155Thr) Located Apart from the Active Site†,‡, 10.1021/bi0349625
  49. Loewenthal Ron, Sancho Javier, Fersht Alan R., Histidine-aromatic interactions in barnase, 10.1016/0022-2836(92)90560-7
  50. Sines J., Allison S., Wierzbicki A., McCammon J. A., Brownian dynamics simulation of the superoxide-superoxide dismutase reaction: iron and manganese enzymes, 10.1021/j100365a084
  51. Hunter Therese, Ikebukuro Kazunori, Bannister William H., Bannister Joe V., Hunter Gary J., The Conserved Residue Tyrosine 34 Is Essential for Maximal Activity of Iron−Superoxide Dismutase fromEscherichia coli†, 10.1021/bi9629541
  52. SATO Showbu, HARRIS J. Ieuan, Superoxide Dismutase from Thermus aquaticus. Isolation and Characterisation of Manganese and Apo Enzymes, 10.1111/j.1432-1033.1977.tb11328.x
  53. SATO Showbu, NAKAZAWA Kayoko, Purification and Properties of Superoxide Dismutase from Thermus thermophilusHB8, 10.1093/oxfordjournals.jbchem.a132007
  54. J. Biol. Chem., 256, 5857 (1981)
  55. J. Biol. Chem., 260, 16424 (1985)
  56. Bull Christopher, Niederhoffer Eric C., Yoshida Tatsuro, Fee James A., Kinetic studies of superoxide dismutases: properties of the manganese-containing protein from Thermus thermophilus, 10.1021/ja00011a003
  57. Ludwig Martha L., Metzger Anita L., Pattridge Katherine A., Stallings William C., Manganese superoxide dismutase from Thermus thermophilus, 10.1016/0022-2836(91)90569-r
  58. Whittaker Mei M., Whittaker James W., Thermally Triggered Metal Binding by RecombinantThermus thermophilusManganese Superoxide Dismutase, Expressed as the Apo-enzyme, 10.1074/jbc.274.49.34751
  59. Stallings William C., Metzger Anita L., Paitridge Katherine A., Fee James A., Ludwig Martha L., Structure-Function Relationships in Iron and Manganese Superoxide Dismutases, 10.3109/10715769109145794
  60. Bannister Joe V., Bannister William H., Rotilio Giuseppe, Aspects of the Structure, Function, and Applications of Superoxide Dismutas, 10.3109/10409238709083738
  61. J. Biol. Chem., 259, 1095 (1984)