User menu

Zipper mechanism of nanotube fusion: Theory and experiment

Bibliographic reference Yoon, M ; Han, SW ; Kim, G ; Lee, SB ; Berber, S ; et. al. Zipper mechanism of nanotube fusion: Theory and experiment. In: Physical Review Letters, Vol. 92, no. 7 (2004)
Permanent URL
  1. Kroto H. W., Heath J. R., O'Brien S. C., Curl R. F., Smalley R. E., C60: Buckminsterfullerene, 10.1038/318162a0
  2. Iijima Sumio, Helical microtubules of graphitic carbon, 10.1038/354056a0
  3. Terrones M., Coalescence of Single-Walled Carbon Nanotubes, 10.1126/science.288.5469.1226
  4. Bandow S., Takizawa M., Hirahara K., Yudasaka M., Iijima S., Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes, 10.1016/s0009-2614(01)00192-0
  5. H. Ueno, Fullerene Sci. Technol., 6, 319 (1998)
  6. Ōsawa Shūichi, Ōsawa Eiji, Non-Rigid Treatment of Interactions Between C60Molecules, 10.1080/10641229608001554
  7. Stone A.J., Wales D.J., Theoretical studies of icosahedral C60 and some related species, 10.1016/0009-2614(86)80661-3
  8. P. W. Fowler, An Atlas of Fullerenes (1995)
  9. Ōsawa Eiji, Ueno Hiroshi, Yoshida Mitsuho, Slanina Zdenek, Zhao Xiang, Nishiyama Minobu, Saito Hidemitsu, Combined topological and energy analysis of the annealing process in fullerene formation. Stone–Wales interconversion pathways among IPR isomers of higher fullerenes, 10.1039/a706423c
  10. Zhao Yufeng, Yakobson Boris I., Smalley Richard E., Dynamic Topology of Fullerene Coalescence, 10.1103/physrevlett.88.185501
  11. Zhao Yufeng, Smalley Richard E., Yakobson Boris I., Coalescence of fullerene cages: Topology, energetics, and molecular dynamics simulation, 10.1103/physrevb.66.195409
  12. Toma´nek D., Zhong W., Krastev E., Stability of multishell fullerenes, 10.1103/physrevb.48.15461
  13. Robertson D. H., Brenner D. W., Mintmire J. W., Energetics of nanoscale graphitic tubules, 10.1103/physrevb.45.12592
  14. Tománek David, Schluter Michael, Growth regimes of carbon clusters, 10.1103/physrevlett.67.2331
  15. W. Press, Numerical Recipes (1986)
  16. E Weinan, Ren Weiqing, Vanden-Eijnden Eric, String method for the study of rare events, 10.1103/physrevb.66.052301
  17. Banhart Florian, Irradiation effects in carbon nanostructures, 10.1088/0034-4885/62/8/201
  18. Eggen B. R., Heggie M. I., Jungnickel G., Latham C. D., Jones R., Briddon P. R., Autocatalysis During Fullerene Growth, 10.1126/science.272.5258.87
  19. Slanina Zdeněk, Zhao Xiang, Uhlı́k Filip, Ozawa Masaki, Ōsawa Eiji, Computational modeling of the elemental catalysis in the Stone–Wales fullerene rearrangements, 10.1016/s0022-328x(99)00720-2
  20. Kaxiras Efthimios, Pandey K. C., Energetics of defects and diffusion mechanisms in graphite, 10.1103/physrevlett.61.2693
  21. Nardelli Marco Buongiorno, Yakobson B. I., Bernholc J., Brittle and Ductile Behavior in Carbon Nanotubes, 10.1103/physrevlett.81.4656
  22. Buongiorno Nardelli Marco, Yakobson B. I., Bernholc J., Mechanism of strain release in carbon nanotubes, 10.1103/physrevb.57.r4277
  23. Zhang Peihong, Lammert Paul E., Crespi Vincent H., Plastic Deformations of Carbon Nanotubes, 10.1103/physrevlett.81.5346
  24. Journet C., Maser W. K., Bernier P., Loiseau A., de la Chapelle M. Lamy, Lefrant S., Deniard P., Lee R., Fischer J. E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique, 10.1038/41972
  25. Nikolaev Pavel, Bronikowski Michael J, Bradley R.Kelley, Rohmund Frank, Colbert Daniel T, Smith K.A, Smalley Richard E, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, 10.1016/s0009-2614(99)01029-5
  26. Kwon Young-Kyun, Tománek David, Orientational Melting in Carbon Nanotube Ropes, 10.1103/physrevlett.84.1483