Sphingomonas is an organism of major interest for the degradation of organic contaminants in soils and other environments. A medium based on the aminoglycoside antibiotic streptomycin (Sm) was developed, which, together with the yellow pigmentation of Sphingomonas, facilitated the detection, recovery and quantification of culturable Sphingomonas from soils. All 29 previously described bacterial strains belonging to 17 different Sphingomonas species were able to grow on mineral media containing 200 mug ml(-1) streptomycin, showing that the capacity to resist high concentrations of Sm is a common characteristic within Sphingomonas. Incorporation of Sm into the mineral medium led to a significant reduction in the background microbial population and a concomitant 100 times more sensitive detection of Sphingomonas inoculated in non-sterile soil matrices. The Sm-containing medium was used to examine a variety of hydrocarbon-contaminated soils for the presence and biodiversity of Sphingomonas. Incorporation of Sm in the medium led to a significant increase in the number of yellow-pigmented colonies. Comparison of contaminated and non-contaminated soils derived from the same site revealed colonization by culturable yellow-pigmented Sm-resistant bacteria of the polluted location solely. Both yellow and non-yellow-pigmented colonies were purified from plates containing glucose and Sm, and BOX-polymerase chain reaction (PCR) was used to sort out clonally related strains. Representative strains from the major BOX-PCR clusters were identified using FAME and partial 16S rRNA gene sequencing. Forty-eight of 58 Sm-resistant isolates were identified as Sphingomonas sp. Streptomycin-resistant Sphingomonas isolates generated BOX-PCR diversity patterns that were site dependent and represented different species mainly belonging to Sphingomonas subgroups containing species formerly designated as Sphingopyxis and Sphingobium. The ability to degrade phenanthrene was only found in a minority of the Sphingomonas isolates, which all originated from soils containing high phenanthrene concentrations.
Gibson D.T., J Ind Microbiol Biotechnol, 23, 284 (1973)
Mueller J.G., Appl Environ Microbiol, 56, 1079 (1990)
Khan A., Int J Syst Bacteriol, 46, 466 (1996)
Bastiaens L., Springael D., Wattiau P., Harms H., deWachter R., Verachtert H., Diels L., Isolation of Adherent Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Bacteria Using PAH-Sorbing Carriers, 10.1128/aem.66.5.1834-1843.2000
Pinyakong O, Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2, 10.1016/s0378-1097(00)00380-3
Stolz A, Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6, 10.1038/sj.jim.2900725
Cassidy M B, Lee H, Trevors J T, Zablotowicz R B, Chlorophenol and nitrophenol metabolism by Sphingomonas sp UG30, 10.1038/sj.jim.2900749
Crawford R L, Ederer M M, Phylogeny of Sphingomonas species that degrade pentachlorophenol, 10.1038/sj.jim.2900729
Keim T, Francke W, Schmidt S, Fortnagel P, Catabolism of 2,7-dichloro- and 2,4,8-trichlorodibenzofuran by Sphingomonas sp strain RW1, 10.1038/sj.jim.2900739
Keim T, Francke W, Schmidt S, Fortnagel P, Catabolism of 2,7-dichloro- and 2,4,8-trichlorodibenzofuran by Sphingomonas sp strain RW1, 10.1038/sj.jim.2900739
Nagata Y, Miyauchi K, Takagi M, Complete analysis of genes and enzymes for ?-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26, 10.1038/sj.jim.2900736
Adkins A, Degradation of the phenoxy acid herbicide diclofop-methyl by Sphingomonas paucimobilis isolated from a Canadian prairie soil, 10.1038/sj.jim.2900744
Kohler H P E, Sphingomonas herbicidovorans MH: a versatile phenoxyalkanoic acid herbicide degrader, 10.1038/sj.jim.2900751
Feng X., Appl Environ Microbiol, 63, 1332 (1997)
Momma K, Hashimoto W, Miyake O, Yoon H-J, Kawai S, Mishima Y, Mikami B, Murata K, Special cell surface structure, and novel macromolecule transport/depolymerization system of Sphingomonas sp A1, 10.1038/sj.jim.2900719
Sorensen S. R., Ronen Z., Aamand J., Isolation from Agricultural Soil and Characterization of a Sphingomonas sp. Able To Mineralize the Phenylurea Herbicide Isoproturon, 10.1128/aem.67.12.5403-5409.2001
Frederickson J.K., Appl Environ Microbiol, 61, 1917 (1995)
Fredrickson J K, Balkwill D L, Romine M F, Shi T, Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp, 10.1038/sj.jim.2900741
Tiirola M. A., Mannisto M. K., Puhakka J. A., Kulomaa M. S., Isolation and Characterization of Novosphingobium sp. Strain MT1, a Dominant Polychlorophenol-Degrading Strain in a Groundwater Bioremediation System, 10.1128/aem.68.1.173-180.2002
Coughlin M F, Kinkle B K, Bishop P L, Degradation of azo dyes containing aminonaphthol by Sphingomonas sp strain 1CX, 10.1038/sj.jim.2900746
Daane L. L., Harjono I., Zylstra G. J., Haggblom M. M., Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria Associated with the Rhizosphere of Salt Marsh Plants, 10.1128/aem.67.6.2683-2691.2001
Tabata K., Appl Environ Microbiol, 65, 4268 (1999)
Gilewicz M., Not Available Not Available, Nadalig T., Budzinski H., Doumenq P., Michotey V., Bertrand J. C., Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene, 10.1007/s002530051091
Wiese A, Seydel U, Interaction of peptides and proteins with bacterial surface glycolipids: a comparison of glycosphingolipids and lipopolysaccharides, 10.1038/sj.jim.2900709
Busse H-J, K�mpfer P, Denner E B M, Chemotaxonomic characterisation of Sphingomonas, 10.1038/sj.jim.2900745
Takeuchi M, Hamana K, Hiraishi A, Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses., 10.1099/00207713-51-4-1405
Yabuuchi E., Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola, 10.1099/ijs.0.01868-0
Leung K T, Chang Y J, Gan Y D, Peacock A, Macnaughton S J, Stephen J R, Burkhalter R S, Flemming C A, White <, Detection of Sphingomonas spp in soil by PCR and sphingolipid biomarker analysis, 10.1038/sj.jim.2900677
Leys N. M. E. J., Ryngaert A., Bastiaens L., Verstraete W., Top E. M., Springael D., Occurrence and Phylogenetic Diversity of Sphingomonas Strains in Soils Contaminated with Polycyclic Aromatic Hydrocarbons, 10.1128/aem.70.4.1944-1955.2004
Neef A, Witzenberger R, K�mpfer P, Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes, 10.1038/sj.jim.2900768
Aagot N., Nybroe O., Nielsen P., Johnsen K., An Altered Pseudomonas Diversity Is Recovered from Soil by Using Nutrient-Poor Pseudomonas-Selective Soil Extract Media, 10.1128/aem.67.11.5233-5239.2001
Mougel C., Cournoyer B., Nesme X., Novel Tellurite-Amended Media and Specific Chromosomal and Ti Plasmid Probes for Direct Analysis of Soil Populations of Agrobacterium Biovars 1 and 2, 10.1128/aem.67.1.65-74.2001
Stahly D., Appl Environ Microbiol, 58, 740 (1992)
Egan S., Appl Environ Microbiol, 64, 5061 (1998)
Kornder J.D., Streptomycin revisited: molecular action in the microbial cell, 10.1054/mehy.2001.1450
Miranda Claudio D, Zemelman Raul, Bacterial resistance to oxytetracycline in Chilean salmon farming, 10.1016/s0044-8486(02)00124-2
Kawasaki S., J Bacteriol, 176, 284 (1994)
VANOVERBEEK L, WELLINGTON E, EGAN S, SMALLA K, HEUER H, COLLARD J, GUILLAUME G, KARAGOUNI A, NIKOLAKOPOULOU T, VANELSAS J, Prevalence of streptomycin-resistance genes in bacterial populations in European habitats, 10.1016/s0168-6496(02)00345-8
Lloyd-Jones G., Appl Environ Microbiol, 63, 3286 (1997)
Kim E, Zylstra G J, Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m -xylene degradation by Sphingomonas yanoikuyae B1, 10.1038/sj.jim.2900724
Kim E., Appl Environ Microbiol, 62, 1467 (1996)
Romine M.F., J Bacteriol, 181, 1585 (1999)
Wattiau Pierre, Bastiaens Leen, van Herwijnen René, Daal Ludwin, Parsons John R, Renard Marie-Eve, Springael Dirk, Cornelis Guy R, Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis, 10.1016/s0923-2508(01)01269-4
Bastiaens Leen, Springael Dirk, Dejonghe Winnie, Wattiau Pierre, Verachtert Hubert, Diels Ludo, A transcriptional luxAB reporter fusion responding to fluorene in Sphingomonas sp. LB126 and its initial characterisation for whole-cell bioreporter purposes, 10.1016/s0923-2508(01)01268-2
Fulthorpe R.R., Appl Environ Microbiol, 64, 1620 (1998)
Mueller J.G., Bioremediation of Chlorinated and PAH Compounds., 218 (1994)
Mergeay M., Molecular Microbial Ecology Manual, 1 (1995)
Kiyohara H., Appl Environ Microbiol, 43, 454 (1982)
Bron Sierd, Venema Gerard, Ultraviolet inactivation and excision-repair in Bacillus subtilis I. Construction and characterization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives, 10.1016/0027-5107(72)90086-3
van Elsas J.D., Rosado A.S., Wolters A.C., Moore E., Karlson U., Quantitative detection of Sphingomonas chlorophenolica in soil via competitive polymerase chain reaction, 10.1046/j.1365-2672.1998.853509.x
Whited G., J Bacteriol, 173, 3010 (1991)
Wittich R.M., Appl Environ Microbiol, 58, 1005 (1992)
Worsey M.J., J Bacteriol, 124, 7 (1975)
Yabuuchi Eiko, Kawamura Yoshiaki, Kosako Yoshimasa, Ezaki Takayuki, Emendation of Genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and Proposal of Achromobacter ruhlandii (Packer and Vishniac) Comb. Nov., Achromobacter piechaudii (Kiredjian et al.) Comb. Nov., and Achromobacter xylosoxidans Subsp. de, 10.1111/j.1348-0421.1998.tb02306.x
Bibliographic reference
Vanbroekhoven, K ; Ryngaert, A ; Bastiaens, L ; Wattiau, Pierre ; Vancanneyt, M. ; et. al. Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. In: Environmental Microbiology, Vol. 6, no. 11, p. 1123-1136 (2004)