User menu

Sign reversal and tunable rectification in a ballistic nanojunction

Bibliographic reference Hackens, Benoît ; Gence, Loïk ; Gustin, C. ; Wallart, X. ; Bollaert, S. ; et. al. Sign reversal and tunable rectification in a ballistic nanojunction. In: Applied Physics Letters, Vol. 85, no. 19, p. 4508-4510 (2004)
Permanent URL
  1. N. Tesla , Valvular Conduit, US Patent No. 1,329,559.
  2. Linke H., Sheng W. D., Svensson A., Löfgren A., Christensson L., Xu H. Q., Omling P., Lindelof P. E., Asymmetric nonlinear conductance of quantum dots with broken inversion symmetry, 10.1103/physrevb.61.15914
  3. Hieke Katharina, Ulfward Mikael, Nonlinear operation of theY-branch switch: Ballistic switching mode at room temperature, 10.1103/physrevb.62.16727
  4. Shorubalko I., Xu H. Q., Maximov I., Omling P., Samuelson L., Seifert W., Nonlinear operation of GaInAs/InP-based three-terminal ballistic junctions, 10.1063/1.1396626
  5. Song A. M., Lorke A., Kriele A., Kotthaus J. P., Wegscheider W., Bichler M., Nonlinear Electron Transport in an Asymmetric Microjunction: A Ballistic Rectifier, 10.1103/physrevlett.80.3831
  6. Löfgren A., Shorubalko I., Omling P., Song A. M., Quantum behavior in nanoscale ballistic rectifiers and artificial materials, 10.1103/physrevb.67.195309
  7. de Haan S., Lorke A., Kotthaus J. P., Wegscheider W., Bichler M., Rectification in Mesoscopic Systems with Broken Symmetry: Quasiclassical Ballistic Versus Classical Transport, 10.1103/physrevlett.92.056806
  8. Fleischmann Ragnar, Geisel Theo, Mesoscopic Rectifiers Based on Ballistic Transport, 10.1103/physrevlett.89.016804
  9. Büttiker Markus, Sánchez David, Comment on “Mesoscopic Rectifiers Based on Ballistic Transport”, 10.1103/physrevlett.90.119701
  10. Geisel Theo, Fleischmann Ragnar, Geisel and Fleischmann Reply:, 10.1103/physrevlett.90.119702
  11. Mateos J, Vasallo B G, Pardo D, Gonz lez T, Galloo J S, Roelens Y, Bollaert S, Cappy A, Ballistic nanodevices for terahertz data processing: Monte Carlo simulations, 10.1088/0957-4484/14/2/303
  12. Song A. M., Omling P., Samuelson L., Seifert W., Shorubalko I., Zirath H., Room-temperature and 50 GHz operation of a functional nanomaterial, 10.1063/1.1398324
  13. Molenkamp L. W., van Houten H., Beenakker C. W. J., Eppenga R., Foxon C. T., Quantum oscillations in the transverse voltage of a channel in the nonlinear transport regime, 10.1103/physrevlett.65.1052
  14. Note that, for adjacent channels I and J, GIJ is the conductance of the branch I-Jin parallelwith the conductance of branches I-K, K-M, and M-J in series (where K and M are the other channels).
  15. The choice of VSD=30 mV is arbitrary. Choosing another value for VSD would not change our conclusions.
  16. As inferred from μ, ns and device size in Ref. 5.
  17. The current used in our experiment can be large enough to induce Joule heating of the electron system, so that it is logical to consider thermal voltages as a potential explanation to the observed nonlinear transverse voltage. However, an earlier work (Ref. 9) showed that a necessary condition for the occurence of such a thermal voltage in a four terminal configuration is a quantized regime of transport, at least in the narrower part of the device. As the temperature dependence of the effect is consistent with a ballistic regime of transport (and not with a quantized regime), we can exclude a thermal origin for the nonlinear effect.
  18. Bagwell Philip F., Orlando Terry P., Landauer’s conductance formula and its generalization to finite voltages, 10.1103/physrevb.40.1456