User menu

Band-gap energy in the random-phase approximation to density-functional theory

Bibliographic reference Niquet, YM ; Gonze, Xavier. Band-gap energy in the random-phase approximation to density-functional theory. In: Physical review. B, Condensed matter and materials physics, Vol. 70, no. 24, p. 245115:1-12 (2004)
Permanent URL
  1. W. Kohn, Phys. Rev., 140, 1133 (1965)
  2. P. Hohenberg, Phys. Rev., 136, 864 (1964)
  3. R. G. Parr, Density Functional Theory of Atoms and Molecules (1989)
  4. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
  5. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)], 10.1103/physrevlett.78.1396
  6. Rydberg H., Dion M., Jacobson N., Schröder E., Hyldgaard P., Simak S. I., Langreth D. C., Lundqvist B. I., Van der Waals Density Functional for Layered Structures, 10.1103/physrevlett.91.126402
  7. Casida Mark E., Generalization of the optimized-effective-potential model to include electron correlation: A variational derivation of the Sham-Schlüter equation for the exact exchange-correlation potential, 10.1103/physreva.51.2005
  9. A. Görling, Phys. Rev. B, 47, 13 (1993)
  10. Görling Andreas, Levy Mel, Exact Kohn-Sham scheme based on perturbation theory, 10.1103/physreva.50.196
  11. Langreth D.C., Perdew J.P., The exchange-correlation energy of a metallic surface, 10.1016/0038-1098(75)90618-3
  12. Langreth David C., Perdew John P., Exchange-correlation energy of a metallic surface: Wave-vector analysis, 10.1103/physrevb.15.2884
  13. Runge Erich, Gross E. K. U., Density-Functional Theory for Time-Dependent Systems, 10.1103/physrevlett.52.997
  14. M. E. Casida, Recent Developments and Applications of Modern Density Functional Theory (1996)
  15. Onida Giovanni, Reining Lucia, Rubio Angel, Electronic excitations: density-functional versus many-body Green’s-function approaches, 10.1103/revmodphys.74.601
  16. Nozières P., Pines D., Correlation Energy of a Free Electron Gas, 10.1103/physrev.111.442
  17. Barth U von, Hedin L, A local exchange-correlation potential for the spin polarized case. i, 10.1088/0022-3719/5/13/012
  18. S. H. Vosko, Can. J. Phys., 58, 1200 (1980)
  19. Pitarke J. M., Eguiluz A. G., Surface energy of a bounded electron gas: Analysis of the accuracy of the local-density approximation viaab initioself-consistent-field calculations, 10.1103/physrevb.57.6329
  20. Pitarke J., Eguiluz A., Jellium surface energy beyond the local-density approximation: Self-consistent-field calculations, 10.1103/physrevb.63.045116
  21. Dobson John F., Wang Jun, Successful Test of a Seamless van der Waals Density Functional, 10.1103/physrevlett.82.2123
  22. S. Kurth, Phys. Rev. B, 59, 10 (1999)
  23. Furche Filipp, Molecular tests of the random phase approximation to the exchange-correlation energy functional, 10.1103/physrevb.64.195120
  24. Fuchs Martin, Gonze Xavier, Accurate density functionals:  Approaches using the adiabatic-connection fluctuation-dissipation theorem, 10.1103/physrevb.65.235109
  25. Aryasetiawan F., Miyake T., Terakura K., Total Energy Method from Many-Body Formulation, 10.1103/physrevlett.88.166401
  26. Fuchs M., Burke K., Niquet Y.-M., Gonze X., Comment on “Total Energy Method from Many-Body Formulation”, 10.1103/physrevlett.90.189701
  27. Miyake T., Aryasetiawan F., Kotani T., van Schilfgaarde M., Usuda M., Terakura K., Total energy of solids: An exchange and random-phase approximation correlation study, 10.1103/physrevb.66.245103
  28. Dobson John F., Dinte Bradley P., Constraint Satisfaction in Local and Gradient Susceptibility Approximations: Application to a van der Waals Density Functional, 10.1103/physrevlett.76.1780
  29. Kohn Walter, Meir Yigal, Makarov Dmitrii E., van der Waals Energies in Density Functional Theory, 10.1103/physrevlett.80.4153
  30. Lein M., Dobson J. F., Gross E. K. U., Toward the description of van der Waals interactions within density functional theory, 10.1002/(sici)1096-987x(19990115)20:1<12::aid-jcc4>;2-u
  31. Singwi K. S., Tosi M. P., Land R. H., Sjölander A., Electron Correlations at Metallic Densities, 10.1103/physrev.176.589
  32. Sandler U., Wyler A., Phase transitions in fiber materials, 10.1103/physrevb.61.16
  33. M. Lein, Phys. Rev. B, 61, 13 (2000)
  34. Sham L. J., Schlüter M., Density-Functional Theory of the Energy Gap, 10.1103/physrevlett.51.1888
  35. Sham L. J., Exchange and correlation in density-functional theory, 10.1103/physrevb.32.3876
  36. Niquet Y. M., Fuchs M., Gonze X., Asymptotic behavior of the exchange-correlation potentials from the linear-response Sham–Schlüter equation, 10.1063/1.1566739
  37. Niquet Y. M., Fuchs M., Gonze X., Exchange-correlation potentials in the adiabatic connection fluctuation-dissipation framework, 10.1103/physreva.68.032507
  38. Almbladh C.-O., von Barth U., Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues, 10.1103/physrevb.31.3231
  39. Krieger J. B., Li Yan, Iafrate G. J., Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory, 10.1103/physreva.45.101
  40. Eguiluz Adolfo G., Heinrichsmeier Martin, Fleszar Andrzej, Hanke Werner, First-principles evaluation of the surface barrier for a Kohn-Sham electron at a metal surface, 10.1103/physrevlett.68.1359
  41. Godby R. W., Schlüter M., Sham L. J., Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity on Addition of an Electron, 10.1103/physrevlett.56.2415
  42. R. W. Godby, Phys. Rev. B, 37, 10 (1988)
  43. Kotani Takao, An optimized-effective-potential method for solids with exact exchange and random-phase approximation correlation, 10.1088/0953-8984/10/41/007
  44. Perdew John P., Parr Robert G., Levy Mel, Balduz Jose L., Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy, 10.1103/physrevlett.49.1691
  45. Perdew John P., Levy Mel, Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities, 10.1103/physrevlett.51.1884
  46. Sham L. J., Schlüter M., Density-functional theory of the band gap, 10.1103/physrevb.32.3883
  47. A. L. Fetter, Quantum Theory of Many-Particle Systems (1964)
  48. L. Hedin, Phys. Rev., 139, 796 (1965)
  49. Hedin Lars, Lundqvist Stig, Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids, Solid State Physics (1970) ISBN:9780126077230 p.1-181, 10.1016/s0081-1947(08)60615-3
  50. Baym Gordon, Kadanoff Leo P., Conservation Laws and Correlation Functions, 10.1103/physrev.124.287
  51. Baym Gordon, Self-Consistent Approximations in Many-Body Systems, 10.1103/physrev.127.1391
  52. Schindlmayr Arno, Violation of particle number conservation in theGWapproximation, 10.1103/physrevb.56.3528
  53. Schindlmayr Arno, García-González P., Godby R. W., Diagrammatic self-energy approximations and the total particle number, 10.1103/physrevb.64.235106
  54. Hybertsen Mark S., Louie Steven G., First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators, 10.1103/physrevlett.55.1418
  55. Hybertsen Mark S., Louie Steven G., Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, 10.1103/physrevb.34.5390
  56. W. G. Aulbur, Solid State Phys., 54, 1 (1999)
  57. H. J. de Groot, Phys. Rev. B, 52, 11 (1995)
  58. Shirley Eric L., Self-consistentGWand higher-order calculations of electron states in metals, 10.1103/physrevb.54.7758
  59. von Barth Ulf, Holm Bengt, Self-consistentGW0results for the electron gas: Fixed screened potentialW0within the random-phase approximation, 10.1103/physrevb.54.8411
  60. Holm B., von Barth U., Fully self-consistentGWself-energy of the electron gas, 10.1103/physrevb.57.2108
  61. Schöne Wolf-Dieter, Eguiluz Adolfo G., Self-Consistent Calculations of Quasiparticle States in Metals and Semiconductors, 10.1103/physrevlett.81.1662
  62. Tamme D., Schepe R., Henneberger K., Comment on “Self-Consistent Calculations of Quasiparticle States in Metals and Semiconductors”, 10.1103/physrevlett.83.241
  63. Eguiluz Adolfo G., Eguiluz Replies:, 10.1103/physrevlett.83.242
  64. Ku Wei, Eguiluz Adolfo G., Band-Gap Problem in Semiconductors Revisited: Effects of Core States and Many-Body Self-Consistency, 10.1103/physrevlett.89.126401
  65. Cheng Ailan, Klein Michael L., Lewis Laurent J., Orientational ordering in mixed cyanide crystals: (NaCN)1−x(KCN)x, 10.1103/physrevb.44.13
  66. Levy Mel, Perdew John P., Sahni Viraht, Exact differential equation for the density and ionization energy of a many-particle system, 10.1103/physreva.30.2745
  67. DuBois D.F, Electron interactions, 10.1016/0003-4916(59)90016-8
  68. DuBois D.F, Electron interactions, 10.1016/0003-4916(59)90062-4
  69. G. D. Mahan, Comments Condens. Matter Phys., 16, 333 (1994)
  70. de Groot H. J., Ummels R. T. M., Bobbert P. A., Haeringen W. van, Lowest-order corrections to the RPA polarizability andGWself-energy of a semiconducting wire, 10.1103/physrevb.54.2374
  71. R. T. M. Ummels, Phys. Rev. B, 57, 11 (1998)
  72. Luttinger J. M., Analytic Properties of Single-Particle Propagators for Many-Fermion Systems, 10.1103/physrev.121.942
  73. B. Farid, Electron Correlations in the Solid State (1999)
  74. Perdew J. P., Zunger Alex, Self-interaction correction to density-functional approximations for many-electron systems, 10.1103/physrevb.23.5048
  75. Del Sole R., Reining Lucia, Godby R. W., GWΓ approximation for electron self-energies in semiconductors and insulators, 10.1103/physrevb.49.8024
  76. Hamada Noriaki, Hwang Miaogy, Freeman A. J., Self-energy correction for the energy bands of silicon by the full-potential linearized augmented-plane-wave method: Effect of the valence-band polarization, 10.1103/physrevb.41.3620
  77. Arnaud B., Alouani M., All-electron projector-augmented-waveGWapproximation: Application to the electronic properties of semiconductors, 10.1103/physrevb.62.4464
  78. Kotani Takao, van Schilfgaarde Mark, All-electron GW approximation with the mixed basis expansion based on the full-potential LMTO method, 10.1016/s0038-1098(02)00028-5
  79. Lebègue S., Arnaud B., Alouani M., Bloechl P. E., Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH, 10.1103/physrevb.67.155208
  80. Tiago Murilo L., Ismail-Beigi Sohrab, Louie Steven G., Effect of semicore orbitals on the electronic band gaps of Si, Ge, and GaAs within the GW approximation, 10.1103/physrevb.69.125212
  81. Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., Allan D.C., First-principles computation of material properties: the ABINIT software project, 10.1016/s0927-0256(02)00325-7
  82. Troullier N., Martins José Luriaas, Efficient pseudopotentials for plane-wave calculations, 10.1103/physrevb.43.1993
  83. Goedecker S., Teter M., Hutter J., Separable dual-space Gaussian pseudopotentials, 10.1103/physrevb.54.1703
  84. Numerical Data and Functional Relationships in Science and Technology (1987)
  85. Paniago R., Metzger T. H., Trenkler J., Hempelmann R., Reichert H., Schmid S., Chow P. C., Moss S. C., Peisl J., Near-surface tricritical behavior ofV2H(010)at theβ1-β2phase transition, 10.1103/physrevb.56.16
  86. Mermin N. David, Thermal Properties of the Inhomogeneous Electron Gas, 10.1103/physrev.137.a1441
  87. Harbola Manoj K., Relationship between the highest occupied Kohn-Sham orbital eigenvalue and ionization energy, 10.1103/physrevb.60.4545
  88. Städele M., Majewski J. A., Vogl P., Görling A., Exact Kohn-Sham Exchange Potential in Semiconductors, 10.1103/physrevlett.79.2089
  89. M. Städele, Phys. Rev. B, 59, 10 (1999)
  90. Magyar R. J., Fleszar A., Gross E. K. U., Exact-exchange density-functional calculations for noble-gas solids, 10.1103/physrevb.69.045111
  91. Janak J. F., Proof that∂E∂ni=εin density-functional theory, 10.1103/physrevb.18.7165
  92. Casida Mark E., Correlated optimized effective-potential treatment of the derivative discontinuity and of the highest occupied Kohn-Sham eigenvalue: A Janak-type theorem for the optimized effective-potential model, 10.1103/physrevb.59.4694
  93. P. Nozières, Theory of Interacting Fermi Systems (1964)
  94. Luttinger J. M., Ward J. C., Ground-State Energy of a Many-Fermion System. II, 10.1103/physrev.118.1417
  95. Zangwill A., Soven Paul, Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases, 10.1103/physreva.21.1561
  96. Pick Robert M., Cohen Morrel H., Martin Richard M., Microscopic Theory of Force Constants in the Adiabatic Approximation, 10.1103/physrevb.1.910
  97. V. M. Galitskii, Zh. Eksp. Teor. Fiz., 34, 139 (1958)
  98. V. M. Galitskii, Sov. Phys. JETP, 7, 96 (1958)