User menu

Describing static correlation in bond dissociation by Kohn-Sham density functional theory

Bibliographic reference Fuchs, M ; Niquet, YM ; Gonze, Xavier ; Burke, K. Describing static correlation in bond dissociation by Kohn-Sham density functional theory. In: Journal of Chemical Physics, Vol. 122, no. 9, p. 094116:1-13 (2005)
Permanent URL
  1. Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
  2. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  3. Koch Wolfram, Holthausen Max C., A Chemist's Guide to Density Functional Theory, ISBN:3527303723, 10.1002/3527600043
  4. Becke Axel D., Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing, 10.1063/1.470829
  5. Perdew John P., Ernzerhof Matthias, Burke Kieron, Rationale for mixing exact exchange with density functional approximations, 10.1063/1.472933
  6. Adamo Carlo, Barone Vincenzo, Toward reliable density functional methods without adjustable parameters: The PBE0 model, 10.1063/1.478522
  7. J. Dobson, in Topics of Condensed Matter Physics, edited by M. P. Das (Nova, New York, 1994), p. 121;
  8. Dobson John F., Dinte Bradley P., Constraint Satisfaction in Local and Gradient Susceptibility Approximations: Application to a van der Waals Density Functional, 10.1103/physrevlett.76.1780
  9. Kohn Walter, Meir Yigal, Makarov Dmitrii E., van der Waals Energies in Density Functional Theory, 10.1103/physrevlett.80.4153
  10. Engel E., Höck A., Dreizler R. M., van der Waals bonds in density-functional theory, 10.1103/physreva.61.032502
  11. García-González P., Godby R. W., Many-BodyGWCalculations of Ground-State Properties: Quasi-2D Electron Systems and van der Waals Forces, 10.1103/physrevlett.88.056406
  12. Ernzerhof M., Recent Developments in Density Functional Theory (1997)
  13. Bally Thomas, Sastry G. Narahari, Incorrect Dissociation Behavior of Radical Ions in Density Functional Calculations, 10.1021/jp972378y
  14. Sodupe Mariona, Bertran Juan, Rodríguez-Santiago Luis, Baerends E. J., Ground State of the (H2O)2+Radical Cation:  DFT versus Post-Hartree−Fock Methods, 10.1021/jp983195u
  15. M. Ernzerhof, J. P. Perdew, and K. Burke, in Topics in Current Chemistry, edited by R. F. Nalewajski (Springer, Berlin, 1996), Vol. 180, p. 1.
  16. Gritsenko O. V., Schipper P. R. T., Baerends E. J., Exchange and correlation energy in density functional theory: Comparison of accurate density functional theory quantities with traditional Hartree–Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2, 10.1063/1.474864
  17. Perdew John P., Savin Andreas, Burke Kieron, Escaping the symmetry dilemma through a pair-density interpretation of spin-density functional theory, 10.1103/physreva.51.4531
  18. Lee Aaron M., Handy Nicholas C., Dissociation of hydrogen and nitrogen molecules studied using density functional theory, 10.1039/ft9938903999
  19. Sherrill C.David, Lee Michael S., Head-Gordon Martin, On the performance of density functional theory for symmetry-breaking problems, 10.1016/s0009-2614(99)00206-7
  20. Filatov Michael, Shaik Sason, Diradicaloids:  Description by the Spin-Restricted, Ensemble-Referenced Kohn−Sham Density Functional Method, 10.1021/jp0002289
  21. Pollet R., Savin A., Leininger T., Stoll H., Combining multideterminantal wave functions with density functionals to handle near-degeneracy in atoms and molecules, 10.1063/1.1430739
  22. Langreth David C., Perdew John P., Exchange-correlation energy of a metallic surface: Wave-vector analysis, 10.1103/physrevb.15.2884
  23. Perdew J. P., Density Functional Theory and Its Application to Materials (2001)
  24. Kurth Stefan, Perdew John P., Density-functional correction of random-phase-approximation correlation with results for jellium surface energies, 10.1103/physrevb.59.10461
  25. Dobson John F., Wang Jun, Successful Test of a Seamless van der Waals Density Functional, 10.1103/physrevlett.82.2123
  26. Furche Filipp, Molecular tests of the random phase approximation to the exchange-correlation energy functional, 10.1103/physrevb.64.195120
  27. Fuchs Martin, Gonze Xavier, Accurate density functionals:  Approaches using the adiabatic-connection fluctuation-dissipation theorem, 10.1103/physrevb.65.235109
  28. Rydberg H., Dion M., Jacobson N., Schröder E., Hyldgaard P., Simak S. I., Langreth D. C., Lundqvist B. I., Van der Waals Density Functional for Layered Structures, 10.1103/physrevlett.91.126402
  29. Dion M., Rydberg H., Schröder E., Langreth D. C., Lundqvist B. I., Van der Waals Density Functional for General Geometries, 10.1103/physrevlett.92.246401
  30. Yan Zidan, Perdew John P., Kurth Stefan, Density functional for short-range correlation: Accuracy of the random-phase approximation for isoelectronic energy changes, 10.1103/physrevb.61.16430
  31. Dobson John F., Wang Jun, Energy-optimized local exchange-correlation kernel for the electron gas: Application to van der Waals forces, 10.1103/physrevb.62.10038
  32. Dobson John F., Wang Jun, Gould Tim, Correlation energies of inhomogeneous many-electron systems, 10.1103/physrevb.66.081108
  33. Grüning M., Gritsenko O. V., Baerends E. J., Exchange-correlation energy and potential as approximate functionals of occupied and virtual Kohn–Sham orbitals: Application to dissociating H[sub 2], 10.1063/1.1562197
  34. Herbert John M, Harriman John E, Self-interaction in natural orbital functional theory, 10.1016/j.cplett.2003.10.057
  35. Baerends E. J., Exact Exchange-Correlation Treatment of DissociatedH2in Density Functional Theory, 10.1103/physrevlett.87.133004
  36. Kolos W., Roothaan C. C. J., Accurate Electronic Wave Functions for theH2Molecule, 10.1103/revmodphys.32.219
  37. Coulson C.A., Fischer I., XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule, 10.1080/14786444908521726
  38. Gunnarsson O., Lundqvist B. I., Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism, 10.1103/physrevb.13.4274
  39. R. van Leeuwen, O. V. Gritsenko, and E. J. Baerends, in Topics in Current Chemistry, edited by R. F. Nalewajski (Springer, Berlin, 1996), Vol. 180, p. 107.
  40. Filippi Claudia, Healy Sorcha B., Kratzer P., Pehlke E., Scheffler M., Quantum Monte Carlo Calculations ofH2Dissociation on Si(001), 10.1103/physrevlett.89.166102
  41. Bauernschmitt Rüdiger, Ahlrichs Reinhart, Stability analysis for solutions of the closed shell Kohn–Sham equation, 10.1063/1.471637
  42. Gräfenstein Jürgen, Kraka Elfi, Cremer Dieter, Density functional theory for open-shell singlet biradicals, 10.1016/s0009-2614(98)00335-2
  43. Grimme Stefan, Waletzke Mirko, A combination of Kohn–Sham density functional theory and multi-reference configuration interaction methods, 10.1063/1.479866
  44. Schipper P. R. T., Gritsenko O. V., Baerends E. J., Benchmark calculations of chemical reactions in density functional theory: Comparison of the accurate Kohn–Sham solution with generalized gradient approximations for the H2+H and H2+H2 reactions, 10.1063/1.479707
  45. Görling Andreas, Levy Mel, Exact Kohn-Sham scheme based on perturbation theory, 10.1103/physreva.50.196
  46. Petersilka M., Gossmann U. J., Gross E. K. U., Excitation Energies from Time-Dependent Density-Functional Theory, 10.1103/physrevlett.76.1212
  47. Görling Andreas, Levy Mel, Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion, 10.1103/physrevb.47.13105
  49. Dahlen Nils Erik, von Barth Ulf, Variational second-order Møller–Plesset theory based on the Luttinger–Ward functional, 10.1063/1.1650307
  50. Holleboom L. J., Snijders J. G., A comparison between the Mo/ller–Plesset and Green’s function perturbative approaches to the calculation of the correlation energy in the many‐electron problem, 10.1063/1.459578
  51. Aryasetiawan F., Miyake T., Terakura K., Aryasetiawan, Miyake, and Terakura Reply:, 10.1103/physrevlett.90.189702
  52. Fuchs M., Burke K., Niquet Y.-M., Gonze X., Comment on “Total Energy Method from Many-Body Formulation”, 10.1103/physrevlett.90.189701
  53. Niquet Y. M., Fuchs M., Gonze X., Asymptotic behavior of the exchange-correlation potentials from the linear-response Sham–Schlüter equation, 10.1063/1.1566739
  54. Niquet Y. M., Fuchs M., Gonze X., Exchange-correlation potentials in the adiabatic connection fluctuation-dissipation framework, 10.1103/physreva.68.032507
  55. Perdew John P., Wang Yue, Accurate and simple analytic representation of the electron-gas correlation energy, 10.1103/physrevb.45.13244
  56. Kraus Martin, Wintz Wolfgang, Seifert Udo, Lipowsky Reinhard, Fluid Vesicles in Shear Flow, 10.1103/physrevlett.77.3685
  57. Levy Mel, Perdew John P., Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms, 10.1103/physreva.32.2010
  58. Ernzerhof Matthias, Construction of the adiabatic connection, 10.1016/s0009-2614(96)01225-0
  59. Burke Kieron, Ernzerhof Matthias, Perdew John P., The adiabatic connection method: a non-empirical hybrid, 10.1016/s0009-2614(96)01373-5
  60. R. van Leeuwen, Ph.D. thesis, Vrije Universiteit, 1996.
  61. Gritsenko Oleg V., Baerends Evert Jan, Effect of molecular dissociation on the exchange-correlation Kohn-Sham potential, 10.1103/physreva.54.1957
  62. Puzder Aaron, Chou M. Y., Hood Randolph Q., Exchange and correlation in the Si atom:  A quantum Monte Carlo study, 10.1103/physreva.64.022501
  63. Savin Andreas, Colonna François, Allavena Marcel, Analysis of the linear response function along the adiabatic connection from the Kohn–Sham to the correlated system, 10.1063/1.1405011
  64. Colonna F., Maynau D., Savin A., Correlation energy per particle from the coupling-constant integration, 10.1103/physreva.68.012505
  65. Hood Randolph Q., Chou M. Y., Williamson A. J., Rajagopal G., Needs R. J., Exchange and correlation in silicon, 10.1103/physrevb.57.8972
  66. Magyar R. J., Terilla W., Burke K., Accurate adiabatic connection curve beyond the physical interaction strength, 10.1063/1.1579465
  67. Seidl Michael, Perdew John P., Kurth Stefan, Simulation of All-Order Density-Functional Perturbation Theory, Using the Second Order and the Strong-Correlation Limit, 10.1103/physrevlett.84.5070
  68. Umrigar C. J., Gonze Xavier, Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series, 10.1103/physreva.50.3827
  69. Lein Manfred, Gross E. K. U., Perdew John P., Electron correlation energies from scaled exchange-correlation kernels: Importance of spatial versus temporal nonlocality, 10.1103/physrevb.61.13431
  70. Casida Mark E., Time-Dependent Density Functional Response Theory of Molecular Systems: Theory, Computational Methods, and Functionals, Theoretical and Computational Chemistry (1996) ISBN:9780444824042 p.391-439, 10.1016/s1380-7323(96)80093-8
  71. J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1963), Vol. 1, p. 60.
  72. Gritsenko O. V., van Gisbergen S. J. A., Görling A., Baerends E. J., Excitation energies of dissociating H2: A problematic case for the adiabatic approximation of time-dependent density functional theory, 10.1063/1.1318750
  73. Maitra Neepa T., Zhang Fan, Cave Robert J., Burke Kieron, Double excitations within time-dependent density functional theory linear response, 10.1063/1.1651060
  74. Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., Allan D.C., First-principles computation of material properties: the ABINIT software project, 10.1016/s0927-0256(02)00325-7
  75. Fuchs Martin, Scheffler Matthias, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, 10.1016/s0010-4655(98)00201-x
  76. Appel H., Gross E. K. U., Burke K., Excitations in Time-Dependent Density-Functional Theory, 10.1103/physrevlett.90.043005