User menu

The Hochschild cohomology of a closed manifold

Bibliographic reference Félix, Yves ; Thomas, JC. ; Vigue-Poirrier, M. The Hochschild cohomology of a closed manifold. In: Publications mathématiques de l'I.H.E.S, , no. 99, p. 235-252 (2004)
Permanent URL
  1. Anick David J., Hopf algebras up to homotopy, 10.1090/s0894-0347-1989-0991015-7
  2. Adams J. F., ON THE COBAR CONSTRUCTION, 10.1073/pnas.42.7.409
  3. Cohen R.L., Jones J.D.S., A homotopy theoretic realization of string topology, 10.1007/s00208-002-0362-0
  4. R. Cohen, J. D. S. Jones and J. Yan, The loop homology algebra of spheres and projective spaces, in: Categorical Decomposition Techniques in Algebraic Topology, Prog. Math. 215, Birkhäuser Verlag, Basel-Boston-Berlin (2004), 77–92.
  5. M. Chas and D. Sullivan, String topology, Ann. Math. (to appear) GT/9911159.
  6. R. Cohen, Multiplicative properties of Atiyah duality, in preparation (2003).
  7. Deligne Pierre, Griffiths Phillip, Morgan John, Sullivan Dennis, Real homotopy theory of K�hler manifolds, 10.1007/bf01389853
  8. Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Grad. Texts Math. 205, Springer-Verlag, New York (2000).
  9. Y. Félix, S. Halperin and J.-C. Thomas, Differential graded algebras in topology, in: Handbook of Algebraic Topology, Chapter 16, Elsevier, North-Holland-Amsterdam (1995), 829–865.
  10. Y. Félix, S. Halperin and J.-C. Thomas, Adams’s cobar construction, Trans. Am. Math. Soc., 329 (1992), 531–549.
  11. Gerstenhaber Murray, The Cohomology Structure of an Associative Ring, 10.2307/1970343
  12. Jones John D. S., Cyclic homology and equivariant homology, 10.1007/bf01389424
  13. M. Vigué-Poirrier, Homologie de Hochschild et homologie cyclique des algèbres différentielles graduées, in: Astérisque: International Conference on Homotopy Theory (Marseille-Luminy-1988), 191 (1990), 255–267.