User menu

Ab initio study of benzene adsorption on carbon nanotubes

Bibliographic reference Tournus, F ; Charlier, Jean-Christophe. Ab initio study of benzene adsorption on carbon nanotubes. In: Physical review. B, Condensed matter and materials physics, Vol. 71, no. 16, p. 165421 (2005)
Permanent URL
  1. Carbon Nanotubes, ISBN:9783540410867, 10.1007/3-540-39947-x
  2. Hirsch Andreas, Functionalization of Single-Walled Carbon Nanotubes, 10.1002/1521-3773(20020603)41:11<1853::aid-anie1853>;2-n
  3. Zhao Jijun, Lu Jian Ping, Han Jie, Yang Chih-Kai, Noncovalent functionalization of carbon nanotubes by aromatic organic molecules, 10.1063/1.1577381
  4. Sumanasekera G. U., Pradhan B. K., Romero H. E., Adu K. W., Eklund P. C., Giant Thermopower Effects from Molecular Physisorption on Carbon Nanotubes, 10.1103/physrevlett.89.166801
  5. Star Alexander, Han Tzong-Ru, Gabriel Jean-Christophe P., Bradley Keith, Grüner George, Interaction of Aromatic Compounds with Carbon Nanotubes:  Correlation to the Hammett Parameter of the Substituent and Measured Carbon Nanotube FET Response, 10.1021/nl0346833
  6. Besteman Koen, Lee Jeong-O, Wiertz Frank G. M., Heering Hendrik A., Dekker Cees, Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors, 10.1021/nl034139u
  7. Sun Yi, Wilson Stephen R., Schuster David I., High Dissolution and Strong Light Emission of Carbon Nanotubes in Aromatic Amine Solvents, 10.1021/ja0041730
  8. J. L. Bahr, Chem. Commun. (Cambridge), 2001, 193
  9. Haddon Robert C., .pi.-Electrons in three dimensiona, 10.1021/ar00150a005
  10. Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
  11. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  12. Charlier J.-C, Gonze X, Michenaud J.-P, Graphite Interplanar Bonding: Electronic Delocalization and van der Waals Interaction, 10.1209/0295-5075/28/6/005
  13. Girifalco L. A., Hodak Miroslav, Van der Waals binding energies in graphitic structures, 10.1103/physrevb.65.125404
  14. Baskin Y., Meyer L., Lattice Constants of Graphite at Low Temperatures, 10.1103/physrev.100.544
  15. Sinnokrot Mutasem Omar, Valeev Edward F., Sherrill C. David, Estimates of the Ab Initio Limit for π−π Interactions:  The Benzene Dimer, 10.1021/ja025896h
  16. Ye Xiangyu, Li Zhen-Hua, Wang Wenning, Fan Kangnian, Xu Wei, Hua Zhongyi, The parallel π–π stacking: a model study with MP2 and DFT methods, 10.1016/j.cplett.2004.07.115
  17. Johnson Erin R., Wolkow Robert A., DiLabio Gino A., Application of 25 density functionals to dispersion-bound homomolecular dimers, 10.1016/j.cplett.2004.07.029
  18. Boys S.F., Bernardi F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, 10.1080/00268977000101561
  19. S�nchez-Portal Daniel, Ordej�n Pablo, Artacho Emilio, Soler Jos� M., Density-functional method for very large systems with LCAO basis sets, 10.1002/(sici)1097-461x(1997)65:5<453::aid-qua9>;2-v
  20. Troullier N., Martins José Luriaas, Efficient pseudopotentials for plane-wave calculations, 10.1103/physrevb.43.1993
  21. Kleinman Leonard, Bylander D. M., Efficacious Form for Model Pseudopotentials, 10.1103/physrevlett.48.1425
  22. Sánchez-Portal Daniel, Artacho Emilio, Soler José M, Analysis of atomic orbital basis sets from the projection of plane-wave results, 10.1088/0953-8984/8/21/012
  23. Artacho E., S�nchez-Portal D., Ordej�n P., Garc�a A., Soler J.M., Linear-Scaling ab-initio Calculations for Large and Complex Systems, 10.1002/(sici)1521-3951(199909)215:1<809::aid-pssb809>;2-0
  24. Junquera Javier, Paz Óscar, Sánchez-Portal Daniel, Artacho Emilio, Numerical atomic orbitals for linear-scaling calculations, 10.1103/physrevb.64.235111
  25. Soler José M, Artacho Emilio, Gale Julian D, García Alberto, Junquera Javier, Ordejón Pablo, Sánchez-Portal Daniel, The SIESTA method forab initioorder-Nmaterials simulation, 10.1088/0953-8984/14/11/302
  26. Perdew J. P., Zunger Alex, Self-interaction correction to density-functional approximations for many-electron systems, 10.1103/physrevb.23.5048
  27. Zhao Jijun, Park Hyoungki, Han Jie, Lu Jian Ping, Electronic Properties of Carbon Nanotubes with Covalent Sidewall Functionalization, 10.1021/jp036814u
  28. Weedon Brad R., Haddon R. C., Spielmann H. Peter, Meier Mark S., Fulleroid Addition Regiochemistry Is Driven by π-Orbital Misalignment, 10.1021/ja983269f
  29. Niyogi S., Hamon M. A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M. E., Haddon R. C., Chemistry of Single-Walled Carbon Nanotubes, 10.1021/ar010155r
  30. Haddon R.C., GVB and POAV analysis of rehybridization and π-orbital misalignment in non-planar conjugated systems, 10.1016/0009-2614(86)87055-5
  31. Haddon R. C., Hybridization and the orientation and alignment of .pi.-orbitals in nonplanar conjugated organic molecules: .pi.-orbital axis vector analysis (POAV2), 10.1021/ja00271a009
  32. Zhao X., Liu Y., Inoue S., Suzuki T., Jones R. O., Ando Y., Smallest Carbon Nanotube Is3  Åin Diameter, 10.1103/physrevlett.92.125502
  33. Haddon R. C., Chemistry of the Fullerenes: The Manifestation of Strain in a Class of Continuous Aromatic Molecules, 10.1126/science.261.5128.1545
  34. Srivastava Deepak, Brenner Donald W., Schall J. David, Ausman Kevin D., Yu MinFeng, Ruoff Rodney S., Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes:  Kinky Chemistry, 10.1021/jp990882s
  35. Chen Zhongfang, Thiel Walter, Hirsch Andreas, Reactivity of the Convex and Concave Surfaces of Single-Walled Carbon Nanotubes (SWCNTs) towards Addition Reactions: Dependence on the Carbon-Atom Pyramidalization, 10.1002/cphc.200390015
  36. Banerjee Sarbajit, Wong Stanislaus S., Demonstration of Diameter-Selective Reactivity in the Sidewall Ozonation of SWNTs by Resonance Raman Spectroscopy, 10.1021/nl049261n
  37. da Silva L. B., Fagan S. B., Mota R., Ab Initio Study of Deformed Carbon Nanotube Sensors for Carbon Monoxide Molecules, 10.1021/nl034873d