User menu

Estimation of nonlinear autoregressive models using design-adapted wavelets

Bibliographic reference Delouille, V ; von Sachs, Rainer. Estimation of nonlinear autoregressive models using design-adapted wavelets. In: Institute of Statistical Mathematics. Annals, Vol. 57, no. 2, p. 235-253 (2005)
Permanent URL
  1. Antoniadis, A. and Fan J. (2001). Regularization of wavelets approximations (with discussion),Journal of the American Statistical Association,96, 939–967.
  2. Antoniadis, A. and Pham, D. (1998). Wavelet regression for random or irregular design.Computational Statistics and Data Analysis,28, 363–369.
  3. Berkner, K. and Wells, R. (1998). A correlation-dependent model for denoising via nonorthogonal wavelet transforms, Tech. Report No. 98-07, Computational Mathematics Laboratory, Rice University, Houston, Texas.
  4. Bosq D., Nonparametric Statistics for Stochastic Processes, ISBN:9780387947136, 10.1007/978-1-4684-0489-0
  5. Bühlmann, P. and McNeil, A. (2002). An algorithm for nonparametric GARCH modelling,Computational Statistics and Data Analysis,40, 665–683.
  6. Cai, T. and Brown, L. (1998). Wavelet shrinkage for nonequispaced samples,Annals of Statistics,26 (5), 1783–1799.
  7. Carnicer, J., Dahmen, W. and Peña, J. (1996). Local decomposition of refinable spaces and wavelets,Applied and Computional Harmonic Analysis,3, 127–153.
  8. Chen, R., Yang, L. and Hafner, C. (2004). Nonparametric multi-step ahead prediction in time series analysis,Journal of the Royal Statistical Society, Series B,66, 669–686.
  9. Cohen, A., Daubechies, I. and Feauveau, J. (1992). Bi-orthogonal bases of compactly supported wavelets,Communications in Pure and Applied Mathematics,45, 485–560.
  10. Davidson, J. (1994).Stochastic Limit Theory, Oxford University Press.
  11. Delouille, V. and von Sachs, R. (2004). Estimation of nonlinear autoregressive models using design-adapted wavelets. (Available at
  12. Delouille, V., Franke, J. and von Sachs, R. (2001). Nonparametric stochastic regression with design-adapted wavelets,Sankhya: The Indian Journal of Statistics. Special Issue on Wavelets, Series A,63(3), 328–366.
  13. Delouille, V., Simoens, J. and von Sachs, R. (2004). Smooth design-adapted wavelets for nonparametric stochastic regression.Journal of the American Statistical Association,99, 643–658.
  14. Delyon, B. and Juditsky, A. (1997). On the computation of wavelet coefficients.Journal of Approximation Theory,88, 47–79.
  15. Donoho, D. (1995). De-noising via soft-thresholding,IEEE Transactions on Information Theory,41, 613–627.
  16. Donoho, D. and Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage.Biometrika,81, 425–455.
  17. Donoho, D. and Johnstone, I. (1998). Minimax estimation via wavelet shrinkage.Annals of Statistics,26, 879–921.
  18. Doukhan P., Massart, P. and Rio, E. (1995). Invariance principles for absolutely regular empirical processes,Annales de l'Institut Henri Pointcaré-Probabilités et Statistiques,31(2), 393–427.
  19. Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation,Econometrica,50, 987–1008.
  20. Franke, J., Holzberger, H. and Müller, M. (2002a). Nonparametric estimation of ARMA- and GARCH-processes,Applied Quantitative Finance, 367–388, Springer-Verlag, Berlin.
  21. Franke, J., Kreiss, J.-P. and Mammen, E. (2002b). Bootstrap of kernel smoothing in nonlinear time series,Bernoulli,8, 1–37.
  22. Franke, J., Kreiss, J.-P., Mammen, E. and Neumann, M. (2002c). Properties of the nonparametric autoregressive bootstrap,Journal of Time Series Analysis,23, 555–585.
  23. Girardi, M. and Sweldens, W. (1997). A new class of unbalanced Haar wavelets that form an unconditional basis forL p on general measure spaces.Journal of Fourier Analysis and Applications,3(4), 457–474.
  24. Gouriéroux Christian, ARCH Models and Financial Applications, ISBN:9781461273141, 10.1007/978-1-4612-1860-9
  25. Gouriéroux, C. and Monfort, A. (1992). Qualitative threshold ARCH models,Journal of Econometrics,52, 159–199.
  26. Hafner, C. (1998a). Estimating high frequency foreign exchange rate volatility with nonparametric ARCH models,Journal of Statistical Planning and Inference,68, 247–269.
  27. Hafner Christian M., Nonlinear Time Series Analysis with Applications to Foreign Exchange Rate Volatility, ISBN:9783790810417, 10.1007/978-3-662-12605-9
  28. Hall, P. and Turlach, B. (1997). Interpolation methods for nonlinear wavelet regression with irregularly spaced design,Annals of Statistics,25(5), 1912–1925.
  29. Härdle, W. and Tsybakov, A. (1997). Local polynomial estimators of the volatility function in nonparametric autoregression,Journal of Econometrics,81, 223–242.
  30. Hoffmann, M. (1999). On nonparametric estimation in nonlinear AR(1)-models,Statistics and probability Letters,44, 29–45.
  31. Jones, D. (1978). Nonlinear regressive processes,Proceedings of the Royal Society London, Series A,360, 71–95.
  32. Kovac, A. and Silverman, B. (2000). Extending the scope of wavelet regression methods by coefficient-dependent thresholding,Journal of the American Statistical Association,95, 172–183.
  33. Masry, E. and Tjøstheim, D. (1995). Nonparametric estimation and identification of nonlinear ARCH time series,Econometric Theory,11, 258–289.
  34. Neumann, M. and Kreiss, J.-P. (1998). Regression-type inference in nonparametric autoregression,Annals of Statistics,26, 1570–1613.
  35. Neumann Michael H., von Sachs Rainer, Wavelet Thresholding: Beyond the Gaussian I.I.D. Situation, Wavelets and Statistics (1995) ISBN:9780387945644 p.301-329, 10.1007/978-1-4612-2544-7_18
  36. Robinson, P. (1983). Nonparametric estimators for time series,Journal of Time Series Analysis,4, 185–207.
  37. Simoens, J. and Vandewalle, S. (2003). A stabilized lifting construction of wavelets on irregular meshes on the interval,SIAM Journal of Scientific Computing,24(4), 1356–1378.
  38. Sweldens, W. (1997). The lifting scheme: A construction of second generation wavelets,SIAM Journal of Mathematical Analysis,29(2), 511–546.
  39. Sweldens, W. and Schröder, P. (1996). Building your own wavelets at home,Wavelets in Computer Graphics, 15–87, ACM SIGGRAPH Course Notes.
  40. Tjøstheim, D. (1994). Non-linear time series: A selective review,Scandinavian Journal of Statistics,21, 97–130.
  41. Tong Howell, Threshold Models in Non-linear Time Series Analysis, ISBN:9780387909189, 10.1007/978-1-4684-7888-4