User menu

pi-stacking interaction between carbon nanotubes and organic molecules

Bibliographic reference Tournus, F ; Latil, S. ; Heggie, MI ; Charlier, Jean-Christophe. pi-stacking interaction between carbon nanotubes and organic molecules. In: Physical review. B, Condensed matter and materials physics, Vol. 72, no. 7, p. 075431 (2005)
Permanent URL
  1. Carbon Nanotubes, ISBN:9783540410867, 10.1007/3-540-39947-x
  2. Star Alexander, Han Tzong-Ru, Gabriel Jean-Christophe P., Bradley Keith, Grüner George, Interaction of Aromatic Compounds with Carbon Nanotubes:  Correlation to the Hammett Parameter of the Substituent and Measured Carbon Nanotube FET Response, 10.1021/nl0346833
  3. Zhao Jijun, Lu Jian Ping, Han Jie, Yang Chih-Kai, Noncovalent functionalization of carbon nanotubes by aromatic organic molecules, 10.1063/1.1577381
  4. Sumanasekera G. U., Pradhan B. K., Romero H. E., Adu K. W., Eklund P. C., Giant Thermopower Effects from Molecular Physisorption on Carbon Nanotubes, 10.1103/physrevlett.89.166801
  5. Sun Yi, Wilson Stephen R., Schuster David I., High Dissolution and Strong Light Emission of Carbon Nanotubes in Aromatic Amine Solvents, 10.1021/ja0041730
  6. Simeoni Mirko, De Luca Cinzia, Picozzi Silvia, Santucci Sandro, Delley Bernard, Interaction between zigzag single-wall carbon nanotubes and polymers: A density-functional study, 10.1063/1.1925272
  7. Haddon Robert C., .pi.-Electrons in three dimensiona, 10.1021/ar00150a005
  8. Blase X., Benedict Lorin X., Shirley Eric L., Louie Steven G., Hybridization effects and metallicity in small radius carbon nanotubes, 10.1103/physrevlett.72.1878
  9. Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
  10. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  11. Charlier J.-C, Gonze X, Michenaud J.-P, Graphite Interplanar Bonding: Electronic Delocalization and van der Waals Interaction, 10.1209/0295-5075/28/6/005
  12. Charlier J.-C., Gonze X., Michenaud J.-P., First-principles study of the stacking effect on the electronic properties of graphite(s), 10.1016/0008-6223(94)90192-9
  13. Girifalco L. A., Hodak Miroslav, Van der Waals binding energies in graphitic structures, 10.1103/physrevb.65.125404
  14. Hasegawa Masayuki, Nishidate Kazume, Semiempirical approach to the energetics of interlayer binding in graphite, 10.1103/physrevb.70.205431
  15. Tournus Florent, Charlier Jean-Christophe, Mélinon Patrice, Mutual orientation of two C60 molecules: An ab initio study, 10.1063/1.1855884
  16. Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., Allan D.C., First-principles computation of material properties: the ABINIT software project, 10.1016/s0927-0256(02)00325-7
  17. Troullier N., Martins José Luriaas, Efficient pseudopotentials for plane-wave calculations, 10.1103/physrevb.43.1993
  18. Briddon P.R., Jones R., LDA Calculations Using a Basis of Gaussian Orbitals, 10.1002/(sici)1521-3951(200001)217:1<131::aid-pssb131>;2-m
  19. Ordejón Pablo, Artacho Emilio, Soler José M., Self-consistent order-Ndensity-functional calculations for very large systems, 10.1103/physrevb.53.r10441
  20. S�nchez-Portal Daniel, Ordej�n Pablo, Artacho Emilio, Soler Jos� M., Density-functional method for very large systems with LCAO basis sets, 10.1002/(sici)1097-461x(1997)65:5<453::aid-qua9>;2-v
  21. Bachelet G. B., Hamann D. R., Schlüter M., Pseudopotentials that work: From H to Pu, 10.1103/physrevb.26.4199
  22. Sankey Otto F., Niklewski David J., Ab initiomulticenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems, 10.1103/physrevb.40.3979
  23. Artacho E., S�nchez-Portal D., Ordej�n P., Garc�a A., Soler J.M., Linear-Scaling ab-initio Calculations for Large and Complex Systems, 10.1002/(sici)1521-3951(199909)215:1<809::aid-pssb809>;2-0
  24. Boys S.F., Bernardi F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, 10.1080/00268977000101561
  25. Fisher A. J., Blöchl P. E., Adsorption and scanning-tunneling-microscope imaging of benzene on graphite andMoS2, 10.1103/physrevlett.70.3263
  26. Perdew J. P., Zunger Alex, Self-interaction correction to density-functional approximations for many-electron systems, 10.1103/physrevb.23.5048
  27. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
  28. Wu X., Vargas M. C., Nayak S., Lotrich V., Scoles G., Towards extending the applicability of density functional theory to weakly bound systems, 10.1063/1.1412004
  29. Tournus F., Charlier J.-C., Ab initiostudy of benzene adsorption on carbon nanotubes, 10.1103/physrevb.71.165421
  30. Elkington P. A., Curthoys Geoffrey, Heats of adsorption on carbon black surfaces, 10.1021/j100727a037
  31. Giannozzi P., Comment on “Noncovalent functionalization of carbon nanotubes by aromatic organic molecules” [Appl. Phys. Lett. 82, 3746 (2003)], 10.1063/1.1751626
  32. Shan Bin, Cho Kyeongjae, First Principles Study of Work Functions of Single Wall Carbon Nanotubes, 10.1103/physrevlett.94.236602