User menu

Symmetrization and minimax principles

Bibliographic reference Van Schaftingen, Jean. Symmetrization and minimax principles. In: Communications in Contemporary Mathematics, Vol. 7, no. 4, p. 463-481 (2005)
Permanent URL
  1. F. J. Almgren Jr. and E. H. Lieb, Symposia Mathematica, Vol. XXX, Symposia Mathematica XXX (Academic Press, London, 1989) pp. 89–102.
  2. Brock Friedemann, Continuous rearrangement and symmetry of solutions of elliptic problems, 10.1007/bf02829490
  3. Brock Friedemann, Solynin Alexander Yu., 10.1090/s0002-9947-99-02558-1
  4. Burchard A., Steiner Symmetrization is Continuous in W 1, p, 10.1007/s000390050027
  5. Fraenkel L. E., An Introduction to Maximum Principles and Symmetry in Elliptic Problems, ISBN:9780511569203, 10.1017/cbo9780511569203
  6. Gidas B., Ni Wei-Ming, Nirenberg L., Symmetry and related properties via the maximum principle, 10.1007/bf01221125
  7. Rabinowitz Paul H., On a class of nonlinear Schr�dinger equations, 10.1007/bf00946631
  8. Sarvas J., Ann. Acad. Sci. Fenn. Ser. A I, 522, 44
  9. Schwartz L., Analyse. Deuxième Partie: Topologie Générale et Analyse Fonctionnelle (1970)
  10. Smets Didier, Willem Michel, Partial symmetry and asymptotic behavior for some elliptic variational problems, 10.1007/s00526-002-0180-y
  11. J. Van Schaftingen and M. Willem, Nonlinear Analysis and Applications to the Physical Sciences, eds. V. Benci and A. Masiello (Springer, 2004) pp. 135–152.
  12. Willem Michel, Minimax Theorems, ISBN:9781461286738, 10.1007/978-1-4612-4146-1