User menu

Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC

Bibliographic reference Hiniker, A ; Collet, Jean-François ; Bardwell, JCA. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. In: Journal of Biological Chemistry, Vol. 280, no. 40, p. 33785-33791 (2005)
Permanent URL
  1. Hiniker Annie, Bardwell James C. A., In VivoSubstrate Specificity of Periplasmic Disulfide Oxidoreductases, 10.1074/jbc.m311391200
  2. Bader M. W., Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA, 10.1093/emboj/20.7.1555
  3. Riddles Peter W., Blakeley Robert L., Zerner Burt, [8] Reassessment of Ellman's reagent, Enzyme Structure Part I (1983) ISBN:9780121819910 p.49-60, 10.1016/s0076-6879(83)91010-8
  4. Bradford Marion M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, 10.1016/0003-2697(76)90527-3
  5. EMBO J., 13, 2013 (1994)
  6. EMBO J., 14, 3415 (1995)
  7. Rietsch A, Bessette P, Georgiou G, Beckwith J, Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin., 10.1128/jb.179.21.6602-6608.1997
  8. Porat Amir, Cho Seung-Hyun, Beckwith Jon, The unusual transmembrane electron transporter DsbD and its homologues: a bacterial family of disulfide reductases, 10.1016/j.resmic.2004.05.005
  9. Mol. Gen. Genet., 253, 95 (1996)
  10. Bessette Paul H., Cotto José J., Gilbert Hiram F., Georgiou George, In Vivoandin VitroFunction of theEscherichia coliPeriplasmic Cysteine Oxidoreductase DsbG, 10.1074/jbc.274.12.7784
  11. Rensing Christopher, Grass Gregor, Escherichia colimechanisms of copper homeostasis in a changing environment, 10.1016/s0168-6445(03)00049-4
  12. Roberts S. A., Weichsel A., Grass G., Thakali K., Hazzard J. T., Tollin G., Rensing C., Montfort W. R., Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli, 10.1073/pnas.052710499
  13. Bardwell James C.A., McGovern Karen, Beckwith Jon, Identification of a protein required for disulfide bond formation in vivo, 10.1016/0092-8674(91)90532-4
  14. Kachur Alexander V., Koch Cameron J., Biaglow John E., Mechanism of copper-catalyzed autoxidation of cysteine, 10.1080/10715769900300571
  15. Matsui Lee In Sook, Suzuki Masami, Hayashi Nobuhiro, Hu Jingru, Van Eldik Linda J., Titani Koiti, Nishikimi Morimitsu, Copper-Dependent Formation of Disulfide-Linked Dimer of S100B Protein, 10.1006/abbi.1999.1595
  16. Dailey F. E., Berg H. C., Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli., 10.1073/pnas.90.3.1043
  17. Silhavy T. J., Casadaban M. J., Shuman H. A., Beckwith J. R., Conversion of beta-galactosidase to a membrane-bound state by gene fusion., 10.1073/pnas.73.10.3423
  18. Tian H., Boyd D., Beckwith J., A mutant hunt for defects in membrane protein assembly yields mutations affecting the bacterial signal recognition particle and Sec machinery, 10.1073/pnas.090087297
  19. Wedemeyer William J., Welker Ervin, Narayan Mahesh, Scheraga Harold A., Disulfide Bonds and Protein Folding, 10.1021/bi005111p
  20. Cecconi Ilaria, Moroni Maria, Vilardo Pier Giuseppe, Dal Monte Massimo, Borella Paola, Rastelli Giulio, Costantino Luca, Garland Donita, Carper Deborah, Petrash J. Mark, Del Corso Antonella, Mura Umberto, Oxidative Modification of Aldose Reductase Induced by Copper Ion. Factors and Conditions Affecting the Process†, 10.1021/bi981159f
  21. Invest. Ophthalmol Vis. Sci., 22, 336 (1982)
  22. Alksne L E, Keeney D, Rasmussen B A, A mutation in either dsbA or dsbB, a gene encoding a component of a periplasmic disulfide bond-catalyzing system, is required for high-level expression of the Bacteroides fragilis metallo-beta-lactamase, CcrA, in Escherichia coli., 10.1128/jb.177.2.462-464.1995
  23. Berkmen, M., Boyd, D., and Beckwith, J. (2005) J. Biol. Chem.
  24. Sone Michio, Akiyama Yoshinori, Ito Koreaki, Differentialin VivoRoles Played by DsbA and DsbC in the Formation of Protein Disulfide Bonds, 10.1074/jbc.272.16.10349
  25. Kershaw C. J., The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations, 10.1099/mic.0.27650-0
  26. Pogliano J, Lynch A S, Belin D, Lin E C, Beckwith J, Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system., 10.1101/gad.11.9.1169
  27. Dartigalongue Claire, Missiakas Dominique, Raina Satish, Characterization of theEscherichia coliςERegulon, 10.1074/jbc.m100464200
  28. Zheng M., Wang X., Doan B., Lewis K. A., Schneider T. D., Storz G., Computation-Directed Identification of OxyR DNA Binding Sites in Escherichia coli, 10.1128/jb.183.15.4571-4579.2001
  29. Missiakas D., Georgopoulos C., Raina S., Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo., 10.1073/pnas.90.15.7084
  30. Watarai M., Tobe T., Yoshikawa M., Sasakawa C., Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of epithelial cells., 10.1073/pnas.92.11.4927
  31. Zapun Andre, Missiakas Dominique, Raina Satish, Creighton Thomas E., Structural and Functional Characterization of DsbC, a Protein Involved in Disulfide Bond Formation in Escherichia coli, 10.1021/bi00015a019
  32. Bader Martin W., Xie Tong, Yu Chang-An, Bardwell James C. A., Disulfide Bonds Are Generated by Quinone Reduction, 10.1074/jbc.m003850200
  33. Kadokura H., Snapshots of DsbA in Action: Detection of Proteins in the Process of Oxidative Folding, 10.1126/science.1091724
  34. Rietsch A., Belin D., Martin N., Beckwith J., An in vivo pathway for disulfide bond isomerization in Escherichia coli, 10.1073/pnas.93.23.13048