User menu

Partial symmetry of least energy nodal solutions to some variational problems

Bibliographic reference Bartsch, Thomas ; Weth, T ; Willem, Michel. Partial symmetry of least energy nodal solutions to some variational problems. In: Journal d'Analyse Mathematique, Vol. 96, p. 1-18 (2005)
Permanent URL
  1. L. V. Ahlfors,Conformal Invariants, McGraw-Hill, New York, 1973.
  2. M. Arias, J. Campos, M. Cuesta and J. P. Gossez,Asymmetric elliptic problems with indefinite weights, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002), 581–616.
  3. T. Bartsch, Z. Liu and T. Weth,Sign changing solutions to superlinear Schrödinger equations, Comm. Partial Differential Equations29 (2004), 25–42.
  4. T. Bartsch and T. Weth,A note on additional properties of sign changing solutions to superlinear Schrödinger equations, Topol. Methods Nonlinear Anal.22 (2003), 1–14.
  5. T. Bartsch and T. Weth,Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear.
  6. T. Bartsch and M. Willem,Infinitely many radial solutions of a semilinear elliptic problem on ℝ N, Arch. Rational Mech. Anal.124 (1993), 261–276.
  7. H. Brezis and L. Nirenberg,Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983), 437–477.
  8. F. Brock and A. Yu. Solynin,An approach to symmetrization via polarization, Trans. Amer. Math. Soc.352 (2000), 1759–1796.
  9. A. Castro, J. Cossio and J. M. Neuberger,A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math.27 (1997), 1041–1053.
  10. D. G. de Figueiredo and J. P. Gossez,On the first curve of the Fučik spectrum of an elliptic operator, Differential Integral Equations7 (1994), 1285–1302.
  11. B. Gidas, W. M. Ni and L. Nirenberg,Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979), 209–243.
  12. F. Pacella,Symmetry results for solutions of semilinear elliptic equations with convex non-linearities, J. Funct. Anal.192 (2002), 271–282.
  13. Serrin James, A symmetry problem in potential theory, 10.1007/bf00250468
  14. D. Smets, J. Su and M. Willem,Nonradial ground states for the Hénon equation, Comm. Contemp. Math.4 (2002), 467–480.
  15. Smets Didier, Willem Michel, Partial symmetry and asymptotic behavior for some elliptic variational problems, 10.1007/s00526-002-0180-y
  16. Willem Michel, Minimax Theorems, ISBN:9781461286738, 10.1007/978-1-4612-4146-1