User menu

Comparison of free-surface and rigid-lid finite element models of barotropic instabilities

Bibliographic reference White, Laurent ; Beckers, JM. ; Deleersnijder, Eric ; Legat, Vincent. Comparison of free-surface and rigid-lid finite element models of barotropic instabilities. In: Ocean Dynamics : theoretical, computational oceanography and monitoring, Vol. 56, no. 2, p. 86-103 (2006)
Permanent URL
  1. Beckers J-M, Deleersnijder E (1993) Stability of a FBTCS scheme applied to the propagation of shallow-water intertia–gravity waves on various space grids. J Comput Phys 108(1):95–104
  2. Cockburn B, Karniadakis GE, Shu CW (eds) (2000) Discontinuous Galerkin methods. Theory, computation and applications. In: Lectures notes in computational science and engineering, vol 11. Springer, Berlin Heidelberg New York
  3. Cushman-Roisin B (1994) Geophysical fluid dynamics. Prentice-Hall, Upper Saddle River, NJ
  4. Danilov S, Kivman G, Schröter J (2004) A finite-element ocean model: principles and evaluation. Ocean Model 6:125–150
  5. Dickinson RE, Clare FJ (1973) Numerical study of the unstable modes of a hyperbolic tangent barotropic shear flow. J Atmos Sci 30:1035–1049
  6. Gresho PM, Chan ST, Lee RL, Upson CD (1984) A modified finite element method for solving the time-dependent, incompressible Navier–Stoked equations. Part 1: theory. Int J Numer Methods Fluids 4:557–598
  7. Gresho PM, Sani RL (1987) On pressure boundary conditions for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 7:1111–1145
  8. Gresho PM, Sani RL (1998) Incompressible flow and the finite element method. Wiley, New York
  9. Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier A-M, Webb D (2000) Developments in ocean climate modelling. Ocean Model 2:123–192
  10. Hanert E., Legat V., Deleersnijder E., A comparison of three finite elements to solve the linear shallow water equations, 10.1016/s1463-5003(02)00012-4
  11. Hanert E, Le Roux DY, Legat V, Deleersnijder E (2004) Advection schemes for unstructured grid ocean modelling. Ocean Model 7:39–58
  12. Hanert E, Le Roux DY, Legat V, Deleersnijder E (2005) An efficient Eulerian finite element method for the shallow water equations. Ocean Model 10:115–136
  13. Howard LN (1964) The number of unstable modes in hydrodynamic stability problems. J Mec 3:433–443
  14. Hart JE (1974) On the mixed stability problem for quasi-geostrophic ocean currents. J Phys Oceanogr 4:349–356
  15. HUA BACH-LIEN, THOMASSET FRANCOIS, A noise-free finite element scheme for the two-layer shallow water equations, 10.1111/j.1600-0870.1984.tb00235.x
  16. Killworth PD (1980) Barotropic and baroclinic instability in rotating stratified fluids. Dyn Atmos Ocean 4:143–184
  17. Killworth PD, Stainforth D, Webb DJ, Paterson SM (1991) The development of a free-surface Bryan–Cox–Semtner ocean model. J Phys Oceanogr 21:1333–1348
  19. Kuo HL (1973) Dynamics of quasigeostrophic flows and instability theory. Adv Appl Mech 13:247–330
  20. Kuo HL (1978) A two-layer model study of the combined barotropic and baroclinic instability in the tropics. J Atmos Sci 35:1840–1860
  21. Le Roux DY, Staniforth AN, Lin CA (1998) Finite elements for shallow-water equation ocean models. Mon Weather Rev 126(7):1931–1951
  22. Michalke A (1964) On the inviscid instability of the hyperbolic tangent velocity profile. J Fluid Mech 19:543–556
  23. Nechaev D, Schröter J, Yaremchuk M (2003) A diagnostic stabilized finite-element ocean circulation model. Ocean Model 5:37–63
  24. Pain CC, Piggott MD, Goddard AJH, Fang F, Gorman GJ, Marshall DP, Eaton MD, Power PW, de Oliveira CRE (2004) Three-dimensional unstructured mesh ocean modelling. Ocean Model 10:5–33
  25. Pedlosky J (1964) The stability of currents in the atmosphere and the ocean: part I. J Atmos Sci 2:201–219
  26. Pedlosky Joseph, Geophysical Fluid Dynamics, ISBN:9780387907451, 10.1007/978-1-4684-0071-7
  27. Pietrzak J, Deleersijder E, Schröter J (2005) The second international workshop on unstructured mesh numerical modelling of coastal, shelf and ocean flows, Delft, The Netherlands, September 23–25, 2003. Ocean Model 10:1–3 (Editorial in a special issue)
  28. Schwanenberg D, Kongeter J (2000) A discontinuous Galerkin method for the shallow water equations with source terms. IEEE Comput Sci Eng 11:419–424
  29. White L, Legat V, Deleersnijder E, Le Roux D (2006) A one-dimensional benchmark for the propagation of Poincaré waves. Ocean model, in press