User menu

Askey-Wilson type functions with bound states

Bibliographic reference Haine, Luc ; Iliev, P. Askey-Wilson type functions with bound states. In: The Ramanujan Journal : an international journal devoted to areas of mathematics influenced by Ramanujan, Vol. 11, no. 3, p. 285-329 (2006)
Permanent URL
  1. Andrews, G., Askey, R.: Classical orthogonal polynomials. In: Brezinski, C. Draux, A. Magnus, A.P. Maroni, P. Ronveaux A. (eds.) Polynômes Orthogonaux et Applications. Lecture Notes in Math. vol. 1171, pp. 36–62, Springer-Verlag, Berlin and New York, (1985)
  2. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. (319), (1985)
  3. Bakalov, B., Horozov, E., Yakimov, M.: Bispectral algebras of commuting ordinary differential operators. Comm. Math. Phys. 190, 331–373 (1997)
  4. Bakalov B., Horozov E., Yakimov M., General methods for constructing bispectral operators, 10.1016/0375-9601(96)00624-x
  5. Bochner, S.: über Sturm-Liouvillesche Polynomsysteme. Math. Z. 29, 730–736 (1929)
  6. Cherednik, I.: Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald’s operators. Internat. Math. Res. Notices, 171–180 (1992)
  7. Cherednik, I.: Double affine Hecke algebras and Macdonald’s conjectures. Ann. Math. 141, 191–216 (1995)
  8. Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Comm. Math. Phys. 103, 177–240 (1986)
  9. Everitt, W.N., Kwon, K.H., Littlejohn, L.L., Wellman, R.: Orthogonal polynomial solutions of linear ordinary differential equations. J. Comput. Appl. Math. 133, 85–109 (2001)
  10. Gasper, G., Rahman, M.: Basic hypergeometric series. Encyclopedia of Mathematics and its Applications 35, Cambridge University Press (1990)
  11. Grünbaum, F.A., Haine, L.: Orthogonal polynomials satisfying differential equations: The role of the Darboux transformation. In: Levi, D. Vinet, L. Winternitz, P. (eds.) Symmetries and Integrability of Difference Equations, CRM Proc. Lecture Notes 9, Amer. Math. Soc., Providence, pp. 143–154 (1996)
  12. Grünbaum, F.A., Haine, L.: The q-version of a theorem of Bochner. J. Comput. Appl. Math. 68, 103–114 (1996)
  13. Grünbaum, F.A., Haine, L.: Some functions that generalize the Askey-Wilson polynomials. Comm. Math. Phys. 184, 173–202 (1997)
  14. Grünbaum, F.A., Haine, L., Horozov, E.: Some functions that generalize the Krall-Laguerre polynomials. J. Comput. Appl. Math. 106, 271–297 (1999)
  15. Grünbaum, F.A., Yakimov, M.: Discrete bispectral Darboux transformations from Jacobi operators. Pacific J. Math. 204, 395–431 (2002)
  16. Haine, L.: The Bochner–Krall problem: Some new perspectives. In: Bustoz, J. Ismail, M.E.H. Suslov, S.K. (eds.) Special Functions 2000: Current Perspective and Future Directions, NATO Sciences Series II. Mathematics, Physics and Chemistry, Vol. 30, pp. 141–178, Kluwer Academic Publishers, (2001)
  17. Haine, L., Iliev, P.: The bispectral property of a q-deformation of the Schur polynomials and the q-KdV hierarchy. J. Phys. A: Math. Gen. 30, 7217–7227 (1997)
  18. Haine, L., Iliev, P.: Commutative rings of difference operators and an adelic flag manifold. Internat. Math. Res. Notices 6, 281–323 (2000)
  19. Haine, L., Iliev, P.: A rational analogue of the Krall polynomials. J. Phys. A. Math. Gen. 34, 2445–2457 (2001)
  20. Iliev, P.: Solutions to Frenkel’s deformation of the KP hierarchy. J. Phys. A: Math. Gen. 31, L241–L244 (1998)
  21. Iliev, P.: q-KP hierarchy, bispectrality and Calogero-Moser systems. J. Geom. Phys. 35, 157–182 (2000)
  22. Ismail, M.E.H., Rahman, M.: The associated Askey-Wilson polynomials. Trans. Amer. Math. Soc. 328(1), 201–237 (1991)
  23. Kasman, A., Rothstein, M.: Bispectral Darboux transformations: The generalized Airy case. Physica D 102, 159–176 (1997)
  24. Koekoek, J., Koekoek, R.: Differential equations for generalized Jacobi polynomials. J. Comput. Appl. Math. 126, 1–31 (2000)
  25. Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Reports of the Faculty of Technical Mathematics and Informatics, No. 98-17, Delft (1998)
  26. Koelink, E., Stokman, J.V.: The Askey-Wilson function transform. Internat. Math. Res. Notices 22, 1203–1227, 2001.
  27. Koornwinder Tom H., Orthogonal polynomials with weight function $(1-x)sp{alpha }(1+x)sp{eta }+Mdelta (x+1)+Ndelta (x-1)$ , 10.4153/cmb-1984-030-7
  28. Krall, H.L.: Certain differential equations for the Tchebycheff polynomials. Duke Math. J. 4, 705–718 (1938)
  29. Krall, H.L.: On orthogonal polynomials satisfying a certain fourth order differential equation. The Pennsylvania Sate College Studies, 6 (1940)
  30. Littiejohn Lance L., THE KRALL POLYNOMIALS: A NEW CLASS OF ORTHOGONAL POLYNOMIALS, 10.1080/16073606.1982.9632267
  31. Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equations. In: Nagata, M. (ed.) Proceedings of International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto 1977), pp. 115–153, Kinokuniya Book-Store, Tokyo, (1978)
  32. Nijhoff, F.W., Chalykh, O.A.: Bispectral rings of difference operators. Russian Math. Surveys, 54, 644–645 (1999)
  33. Noumi, M., Stokman, J.V.: Askey-Wilson polynomials: An affine Hecke algebraic approach, preprint (2000) arXiv:math.QA/0001033
  34. Rahman Mizan, The linearization of the product of continuous $q$-Jacobi polynomials , 10.4153/cjm-1981-076-8
  35. Rahman, M.: q-Wilson functions of the second kind. Siam J. Math. Anal. 17(5), 1280–1286 (1986)
  36. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Inst. Hautes Études Sci. Publ. Math. 61, 5–65 (1985)
  37. Spiridonov, V.P., Zhedanov, A.S.: Discrete Darboux transformations, the discrete-time Toda lattice and the Askey-Wilson polynomials. Meth. Appl. Anal. 2, 369–398 (1995)
  38. Suslov, S.K.: Some orthogonal very well poised 8φ7-functions. J. Phys. A: Math. Gen. 30, 5877–5885 (1997)
  39. Suslov, S.K.: Some orthogonal very-well-poised 8φ7- functions that generalize Askey-Wilson polynomials. Ramanujan J. 5, 183–218 (2001)
  40. Toda, M.: Theory of Nonlinear Lattices. Springer Series in Solid-State Sciences, vol. 20. Springer, Berlin, Heidelberg, New-York (1981)
  41. Bispectral commutative ordinary differential operators., 10.1515/crll.1993.442.177
  42. Wilson, G.: Collisions of Calogero-Moser particles and an adelic Grassmannian, with an appendix by I.G. Macdonald. Invent. Math. 133, 1–41 (1998)
  43. Wright, P.E.: Darboux transformations, algebraic subvarieties of Grassmann manifolds, commuting flows and bispectrality, Ph.D. Thesis, UC Berkeley (1987)
  44. Zhedanov, A.S.: A method of constructing Krall’s polynomials. J. Comput. Appl. Math. 107, 1–20 (1999)