# Calculating the first nontrivial 1-cocycle in the space of long knots

## Primary tabs

Bibliographic reference | Turchin, Victor. Calculating the first nontrivial 1-cocycle in the space of long knots. In: Mathematical notes / Academy of Sciences of the U S S R, Vol. 80, no. 1-2, p. 101-108 (2006) |
---|---|

Permanent URL | http://hdl.handle.net/2078.1/38076 |

## References Provided by I4OC

- V. A. Vassiliev, “On combinatorial formulas for cohomology of spaces of knots,” Moscow Math. J., 1 (2001), no. 1, 91–123.
- V. A. Vassiliev, “Cohomology of knot spaces,” in: Theory of Singularities and Its Applications, Advances in Soviet Math., vol. 1, ed. V. I. Arnold, AMS, Providence, RI, 1990, pp. 23–69.
- D. Bar-Natan, “On the Vassiliev knot invariants,” Topology, 34 (1995), 423–472.
- S. V. Chmutov, S. V. Duzhin, and S. K. Lando, “Vassiliev knot invariants. I. Introduction,” in: Singularities and Bifurcations, Adv. in Sov. Math., vol. 21, AMS, Providence, RI, 1994, pp. 117–126.
- M. Kontsevich, “Vassiliev’s knot invariants,” in: Adv. in Sov. Math., vol. 16, no. 2, AMS, Providence RI, 1993, pp. 137–150.
- Vassiliev Victor A.,
*Topology of two-connected graphs and homology of spaces of knots*, 10.1090/trans2/190/13 - V. A. Vassiliev, “Homology of spaces of knots in any dimensions,” Philos. Transact. of the London Royal Society, 359 (2001), no. 1784, 1343–1364.
- M. Polyak and O. Viro, “Gauss diagram formulas for Vassiliev invariants,” Internat. Math. Res. Notes, 11 (1994), 445–453.
- M. Goussarov, M. Polyak, and O. Viro, “Finite type invariants of classical and virtual knots,” Topology, 39 (2000), no. 5, 1045–1068.
- R. Budney, Little Cubes and Long Knots, GT/0309427.
- R. Budney and F. Cohen, On the Homology of the Space of Knots (to appear).
- P. Gilmer, “A method for computing the Arf invariants for links,” in: Quantum Topology, Series on Knots and Everything, vol. 3, eds. L. Kauffman and R. Baadhio, World Sci., Singapore, 1993, pp. 174–181.
- L. H. Kauffman, “On Knots,” in: Annals of Math., Studies 115, Princeton University Press, 1987.
- J. Lannes, “Sur les invariants de Vassiliev de degré inférieur ou égal à 3,” Enseign. Math. (2), 39 (1993), no. 3–4, 295–316.
- Ng Ka Yi, “Groups of ribbon knots,” Topology, 37 (1998), 441–458.
- M. Polyak and O. Viro, “On the Casson knot invariant,” Journal of Knot Theory and Its Ramifications, 10 (2001), no. 5, 711–738; GT/9903158v1.
- A. Hatcher, Topological Moduli Spaces of Knots, http://math.cornell.edu/∼hatcher .