User menu

Calculating the first nontrivial 1-cocycle in the space of long knots

Bibliographic reference Turchin, Victor. Calculating the first nontrivial 1-cocycle in the space of long knots. In: Mathematical notes / Academy of Sciences of the U S S R, Vol. 80, no. 1-2, p. 101-108 (2006)
Permanent URL
  1. V. A. Vassiliev, “On combinatorial formulas for cohomology of spaces of knots,” Moscow Math. J., 1 (2001), no. 1, 91–123.
  2. V. A. Vassiliev, “Cohomology of knot spaces,” in: Theory of Singularities and Its Applications, Advances in Soviet Math., vol. 1, ed. V. I. Arnold, AMS, Providence, RI, 1990, pp. 23–69.
  3. D. Bar-Natan, “On the Vassiliev knot invariants,” Topology, 34 (1995), 423–472.
  4. S. V. Chmutov, S. V. Duzhin, and S. K. Lando, “Vassiliev knot invariants. I. Introduction,” in: Singularities and Bifurcations, Adv. in Sov. Math., vol. 21, AMS, Providence, RI, 1994, pp. 117–126.
  5. M. Kontsevich, “Vassiliev’s knot invariants,” in: Adv. in Sov. Math., vol. 16, no. 2, AMS, Providence RI, 1993, pp. 137–150.
  6. Vassiliev Victor A., Topology of two-connected graphs and homology of spaces of knots, 10.1090/trans2/190/13
  7. V. A. Vassiliev, “Homology of spaces of knots in any dimensions,” Philos. Transact. of the London Royal Society, 359 (2001), no. 1784, 1343–1364.
  8. M. Polyak and O. Viro, “Gauss diagram formulas for Vassiliev invariants,” Internat. Math. Res. Notes, 11 (1994), 445–453.
  9. M. Goussarov, M. Polyak, and O. Viro, “Finite type invariants of classical and virtual knots,” Topology, 39 (2000), no. 5, 1045–1068.
  10. R. Budney, Little Cubes and Long Knots, GT/0309427.
  11. R. Budney and F. Cohen, On the Homology of the Space of Knots (to appear).
  12. P. Gilmer, “A method for computing the Arf invariants for links,” in: Quantum Topology, Series on Knots and Everything, vol. 3, eds. L. Kauffman and R. Baadhio, World Sci., Singapore, 1993, pp. 174–181.
  13. L. H. Kauffman, “On Knots,” in: Annals of Math., Studies 115, Princeton University Press, 1987.
  14. J. Lannes, “Sur les invariants de Vassiliev de degré inférieur ou égal à 3,” Enseign. Math. (2), 39 (1993), no. 3–4, 295–316.
  15. Ng Ka Yi, “Groups of ribbon knots,” Topology, 37 (1998), 441–458.
  16. M. Polyak and O. Viro, “On the Casson knot invariant,” Journal of Knot Theory and Its Ramifications, 10 (2001), no. 5, 711–738; GT/9903158v1.
  17. A. Hatcher, Topological Moduli Spaces of Knots,∼hatcher .