User menu

Polynomial regression with censored data based on preliminary nonparametric estimation

Bibliographic reference Heuchenne, Cédric ; Van Keilegom, Ingrid. Polynomial regression with censored data based on preliminary nonparametric estimation. In: Institute of Statistical Mathematics. Annals, Vol. 59, no. 2, p. 273-297 (2007)
Permanent URL
  1. Akritas M.G. (1994). Nearest neighbor estimation of a bivariate distribution under random censoring. Annals of Statistics 22:1299–1327
  2. Akritas M.G. (1996). On the use of nonparametric regression techniques for fitting parametric regression models. Biometrics 52:1342–1362
  3. Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical Report. Berkeley: University of California.
  4. Buckley J., James I. (1979). Linear regression with censored data. Biometrika 66:429–436
  5. Fygenson M., Zhou M. (1994). On using stratification in the analysis of linear regression models with right censoring. Annals of Statistics 22:747–762
  6. Härdle W., Hall P., Ichimura H. (1993). Optimal smoothing in single-index models. Annals of statistics 21:157–178
  7. Kaplan E.L., Meier P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53:457–481
  8. Kardaun O. (1983). Statistical survival analysis of male larynx-cancer patients - a case study. Statistica Neerlandica 37:103–125
  9. Koul H., Susarla V., Van Ryzin J. (1981). Regression analysis with randomly right-censored data. Annals of Statistics 9:1276–1288
  10. Lai T., Ying Z. (1991). Large sample theory of a modified Buckley-James estimator for regression analysis with censored data. Annals of Statistics 19:1370–1402
  11. Leurgans S. (1987). Linear models, random censoring and synthetic data. Biometrika 74:301–309
  12. Li G., Datta S. (2001). A bootstrap approach to non-parametric regression for right censored data. Annals of the Institute of Statistical Mathematics 53:708–729
  13. Miller R.G. (1976). Least squares regression with censored data. Biometrika 63:449–464
  14. Müller H.-G., Wang J.-L. (1994). Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics 50:61–76
  15. Nadaraya E.A. (1964). On estimating regression. Theory of Probability and its Applications 9:141–142
  16. Ritov Y. (1990). Estimation in a linear regression model with censored data. Annals of Statistics 18:303–328
  17. Approximation Theorems of Mathematical Statistics, ISBN:9780470316481, 10.1002/9780470316481
  18. Stute W. (1993). Consistent estimation under random censorship when covariables are present. Journal of Multivariate Analysis 45:89–103
  19. Van Keilegom I. (2003). A note on the nonparametric estimation of the bivariate distribution under dependent censoring. Journal of Nonparametric Statistics 16:659-670
  20. Van Keilegom I., Akritas M.G. (1999). Transfer of tail information in censored regression models. Annals of Statistics 27:1745–1784
  21. Van Keilegom, I. Akritas, M. G. (2000). The least squares method in heteroscedastic censored regression models. In: M.L. Puri (Ed.) Asymptotics in statistics and probability (pp. 379–391).
  22. Vignali C., Brandt W.N., Schneider D.P. (2003). X-ray emission from radio-quiet quasars in the SDSS early data release. The α ox dependence upon luminosity. The Astronomical Journal 125:433–443
  23. Watson G.S. (1964). Smooth regression analysis. Sankhyā Series A 26:359–372
  24. Zhou M. (1992). Asymptotic normality of the ‘synthetic data’ regression estimator for censored survival data. Annals of Statistics 20:1002–1021