User menu

Jump-preserving regression and smoothing using local linear fitting: a compromise

Bibliographic reference Gijbels, Irene ; Lambert, Alexandre ; Qiu, Peihua. Jump-preserving regression and smoothing using local linear fitting: a compromise. In: Institute of Statistical Mathematics. Annals, Vol. 59, no. 2, p. 235-272 (2007)
Permanent URL
  1. Chu C.-K., Glad I.K., Godtliebsen F., Marron J.S. (1998). Edge preserving smoothers for image processing (with discussion). Journal of the American Statistical Association 93:526–556
  2. Eubank R.L., Speckman P.L. (1994). Nonparametric estimation of functions with jump discontinuities. In: Carlstein E., Müller H.-G. Siegmund D. (eds) Change-point Problems, IMS–Lecture Notes, (Vol. 23, pp 130–143).
  3. Fan J., Gijbels I. (1996). Local polynomial modelling and its applications. Chapman and Hall, New York
  4. Gijbels I., Goderniaux A.-C. (2004). Bandwidth selection for change point estimation in nonparametric regression. Technometrics 46:76–86
  5. Gijbels I., Hall P., Kneip A. (1999). On the estimation of jump points in smooth curves. The Annals of the Institute of Statistical Mathematics 51:231–251
  6. Grégoire G., Hamrouni Z. (2002). Change-point estimation by local linear smoothing. Journal of Multivariate Analysis 83:56–83
  7. Hall P., Titterington D.M. (1992). Edge preserving and peak-preserving smoothing. Technometrics 34:429–440
  8. Hamrouni Z. (1999). Inférence statistique par lissage linéaire local pour une fonction de régression présentant des discontinuités. Doctoral Dissertation, Université de Joseph Fourier, Grenoble, France
  9. Kang K.H., Koo J.Y., Park C.W. (2000). Kernel estimation of discontinuous regression functions. Statistics and Probability Letters 47:277–285
  10. Koo J.Y. (1997). Spline estimation of discontinuous regression functions. Journal of Computational and Graphical Statistics 6:266–284
  11. Lee J.S. (1983). Digital image smoothing and the sigma filter. Computer Vision, Graphics and image Processing 24:255–269
  12. Masry E. (1996). Multivariate local polynomial regression for time series: uniform strong consistency and rates. Journal of Time Series Analysis 17:571–599
  13. Mc Donald J.A., Owen A.B. (1986). Smoothing with linear fits. Technometrics 28:195–208
  14. Müller H.-G. (1992). Change-points in nonparametric regression analysis. The Annals of Statistics 20:737–761
  15. Müller H.-G., Song K.-S. (1997). Two-stage change-point estimators in smooth regression models. Statistics and Probability Letters 34:323–335
  16. Polzehl J., Spokoiny V. G., Adaptive weights smoothing with applications to image restoration, 10.1111/1467-9868.00235
  17. Polzehl, J., Spokoiny, V. G. (2003). Varying coefficient regression modeling by adaptive weights smoothing. WIAS-Preprint 818 , Berlin.
  18. Qiu P. (2003). A jump-preserving curve fitting procedure based on local piecewise-linear kernel estimation. Journal of Nonparametric Statistics 15:437–453
  19. Qiu P., Yandell B. (1998). A local polynomial jump detection algorithm in nonparametric regression. Technometrics 40:141–152
  20. Rue H., Chu C.-K., Godtliebsen F., Marron J.S. (2002). M-smoother with local linear fit. Journal of Nonparametric Statistics 14:155–168
  21. Multivariate Density Estimation, ISBN:9780470316849, 10.1002/9780470316849
  22. Speckman, P. L. (1994). Detection of change-points in nonparametric regression. Unpublished manuscript
  23. Spokoiny V.G. (1998). Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. The Annals of Statistics 26:1356–1378
  24. Wu J.S., Chu C.K. (1993). Kernel type estimators of jump points and values of a regression function. The Annals of Statistics 21:1545–1566