User menu

A Newton's method for perturbed second-order cone programs

Bibliographic reference Xia, Yu. A Newton's method for perturbed second-order cone programs. In: Computational Optimization and Applications : an international journal, Vol. 37, no. 3, p. 371-408 (2007)
Permanent URL
  1. Adler, I., Alizadeh, F.: Primal–dual interior point algorithms for convex quadratically constrained and semidefinite optimization problems. Technical report RRR 46-95, RUTCOR, Rutgers University (1995)
  2. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5(1), 13–51 (1995)
  3. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95(1), 3–51 (2003)
  4. Alizadeh, F., Schmieta, S.H.: Optimization with semidefinite, quadratic and linear constraints. Technical report RRR 23-97, RUTCOR, Rutgers University (1997)
  5. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: ICML ’04: Proceedings of the Twenty-first International Conference on Machine Learning, p. 6. ACM, New York (2004)
  6. Benson, H.Y., Vanderbei, R.J.: Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming. Math. Program. Ser. B 95(2), 279–302 (2003)
  7. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)
  8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)
  9. De Luca, T., Facchinei, F., Kanzow, C.: A theoretical and numerical comparison of some semismooth algorithms for complementarity problems. Comput. Optim. Appl. 16(2), 173–205 (2000)
  10. Dennis Jr., J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)
  11. Evtushenko, Yu.G., Purtov, V.A.: Sufficient conditions for a minimum for nonlinear programming problems. Dokl. Akad. Nauk SSSR 278(1), 24–27 (1984)
  12. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Clarendon/Oxford University Press, New York (1994)
  13. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)
  14. Fischer, A.: A special Newton-type optimization method. Optimization 24(3–4), 269–284 (1992)
  15. Fischer, A., Jiang, H.: Merit functions for complementarity and related problems: a survey. Comput. Optim. Appl. 17(2–3), 159–182 (2000)
  16. Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12(2), 436–460 (2001) (electronic)
  17. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)
  18. Gondzio, J., Grothey, A.: Reoptimization with the primal–dual interior point method. SIAM J. Optim. 13(3), 842–864 (2002) (electronic, 2003)
  19. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)
  20. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998). Also in: ILAS Symposium on Fast Algorithms for Control, Signals and Image Processing, Winnipeg, MB, 1997
  21. Lustig, I.J., Marsten, R.E., Shanno, D.F.: Computational experience with a globally convergent primal–dual predictor–corrector algorithm for linear programming. Math. Program. Ser. A 66(1), 123–135 (1994)
  22. Mangasarian, O.L.: Equivalence of the complementarity problem to a system of nonlinear equations. SIAM J. Appl. Math. 31(1), 89–92 (1976)
  23. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15(6), 959–972 (1977)
  24. Mitchell, J.E., Todd, M.J.: Solving combinatorial optimization problems using Karmarkar’s algorithm. Math. Program. Ser. A 56(3), 245–284 (1992)
  25. Pang, J.-S., Qi, L.: A globally convergent Newton method for convex sc1 minimization problems. J. Optim. Theory Appl. 85(3), 633–648 (1995)
  26. Pang, J.-S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15(2), 311–341 (1990)
  27. Polak, E., Mayne, D.Q.: Algorithm models for nondifferentiable optimization. SIAM J. Control Optim. 23(3), 477–491 (1985)
  28. Qi, L.Q.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18(1), 227–244 (1993)
  29. Qi, L.Q., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. Ser. A 58(3), 353–367 (1993)
  30. Qi, L., Jiang, H.: Semismooth Karush–Kuhn–Tucker equations and convergence analysis of Newton and quasi-Newton methods for solving these equations. Math. Oper. Res. 22(2), 301–325 (1997)
  31. Rockafellar Ralph Tyrell, Convex Analysis : , ISBN:9781400873173, 10.1515/9781400873173
  32. Wolfe Philip, A method of conjugate subgradients for minimizing nondifferentiable functions, Nondifferentiable Optimization (1975) ISBN:9783642007637 p.145-173, 10.1007/bfb0120703
  33. Wright Stephen J., Primal-Dual Interior-Point Methods, ISBN:9780898713824, 10.1137/1.9781611971453
  34. Xia, Y., Alizadeh, F.: The Q method for second-order cone programming. Comput. Oper. Res. (2006). doi: 10.1016/j.cor.2006.08.009 (available on-line November 2006)
  35. Xue, G., Ye, Y.: An efficient algorithm for minimizing a sum of Euclidean norms with applications. SIAM J. Optim. 7(4), 1017–1036 (1997)
  36. Yildirim, E.A., Wright, S.J.: Warm-start strategies in interior-point methods for linear programming. SIAM J. Optim. 12(3), 782–810 (2002)