User menu

Boundary conditions in a two-layer geomorphological model. Application to a hydraulic jump over a mobile bed

Bibliographic reference Savary, Celine ; Zech, Yves. Boundary conditions in a two-layer geomorphological model. Application to a hydraulic jump over a mobile bed. In: Journal of Hydraulic Research, Vol. 45, no. 3, p. 316-332 (2007)
Permanent URL
  1. Abbott M.B., Computational Hydraulics. Elements of the Theory of Free-Surface Flows (1979)
  2. Armanini Aronne, Di Silvio Giampaolo, A one-dimensional model for the transport of a sediment mixture in non-equilibrium conditions, 10.1080/00221688809499212
  3. Armanini A., Journal of Hydraulic Research IAHR, 127, 94 (2001)
  4. Audusse E., A multilayer Saint-Venant model: Derivation and numerical validation, 10.3934/dcdsb.2005.5.189
  5. Bell Robert G., Sutherland Alex J., Nonequilibrium Bedload Transport by Steady Flows, 10.1061/(asce)0733-9429(1983)109:3(351)
  6. Bellal, M., Spinewine, B., Savary, C. and Zech, Y. Morphological Evolution of Steep-Sloped River Beds in the Presence of a Hydraulic Jump: Experimental Study. Proceedings of XXX IAHR Congress. August2003, Thessaloniki, Greece. Vol. C-II, pp.133–140.
  7. Busnelli Marcela M., Stelling Guus S., Larcher Michele, Numerical Morphological Modeling of Open-Check Dams, 10.1061/(asce)0733-9429(2001)127:2(105)
  8. Capart H., Dam-break Induced Geomorphic Flows and the Transition from Solid- to Fluid-Like Behaviour Across Evolving Interfaces (2000)
  9. Capart H., Shallow flow (2004)
  10. Capart, H. and Young, D. L. Two-Layer Shallow Water Computations of Torrential Geomorphic Flows. Proceedings of River Flow 2002. Belgium. September, pp.1003–1012. Louvain-la-Neuve
  11. Chen Su-Chin, Peng Szu-Hsien, Capart Hervé, Two-layer shallow water computation of mud flow intrusions into quiescent water : Calcul des intrusions de boue en eau calme par un écoulement bi-couche de faible profondeur, 10.1080/00221686.2007.9521739
  12. Correia L. R. P., Numerical Modelling of Unsteady Sediment Transport (1990)
  13. Correia, L. R. P., Krishnappan, B. G. and Graf, W. H. Laboratory Verification of a Coupled Unsteady Flow Model. Proceedings of XXIV IAHR Congress. 1991, Madrid, Spain. pp.A471–A480.
  14. Cunge J. A., Practical Aspects of Computational River Hydraulics (1980)
  15. Di Cristo, C., Leopardi, A. and Greco, M. A Bed-Load Transport Model for Non-Uniform Flows. Proceedings of River Flow 2002. September2002, Belgium. pp.859–863. Louvain-la-Neuve
  16. FRACCAROLLO L., CAPART H., Riemann wave description of erosional dam-break flows, 10.1017/s0022112002008455
  17. Fraccarollo L., Capart H., Zech Y., A Godunov method for the computation of erosional shallow water transients, 10.1002/fld.475
  18. Goutièere L., Modèle d'évolution morphologique fluvial de Saint-Venant-Exner: Analyse numérique et validation expérimentale (2006)
  19. Harten Amiram, Lax Peter D., Leer Bram van, On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, 10.1137/1025002
  20. Jansen P. Ph., Principles of River Engineering. The Non-Tidal Alluvial River (1979)
  21. LeVeque Randall J., Finite Volume Methods for Hyperbolic Problems, ISBN:9780511791253, 10.1017/cbo9780511791253
  22. Lyn D. A., Altinakar M., St. Venant–Exner Equations for Near-Critical and Transcritical Flows, 10.1061/(asce)0733-9429(2002)128:6(579)
  23. Meyer-Peter E., IAHR Congress (1948)
  24. Phillips Brett C., Sutherland Alex J., Spatial lag effects in bed load sediment transport, 10.1080/00221688909499247
  25. Phillips B. C., Sutherland A. J., Temporal lag effect in bed load sediment transport, 10.1080/00221689009499144
  26. Rahuel J. L., Modélisation de l'évolution du lit des rivières alluvionnaires à granulométrie étendue (1988)
  27. Savary, C. and Zech, Y. Can a Two-Layer Morphological Model Compete with Common Solid Transport Formulae? Proceedings of River Flow 2006. September2006, Lisbon, Portugal. pp.825–832.
  28. Sieben J., A theoretical analysis of discontinuous flow with mobile bed, 10.1080/00221689909498306
  29. Spinewine B., Two-Layer Flow Behaviour and the Effects of Granular Dilatancy in Dam-Break Induced Sheet-Flow (2005)
  30. Van Leer Bram, Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow, 10.1016/0021-9991(77)90094-8
  31. Vreugdenhil C. B., Computation of Non-Steady Bed-Load Transport by a Pseudo Viscosity Method (1967)