User menu

Boundary estimates for elliptic systems with L-1-data

Bibliographic reference Brezis, Haim ; Van Schaftingen, Jean. Boundary estimates for elliptic systems with L-1-data. In: Calculus of Variations and Partial Differential Equations, Vol. 30, no. 3, p. 369-388 (2007)
Permanent URL
  1. Bourgain Jean, Brezis Haïm, New estimates for the Laplacian, the div–curl, and related Hodge systems, 10.1016/j.crma.2003.12.031
  2. Bourgain J. and Brezis H. (2007). New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. 9(2): 227–315
  3. Bramble J.H. and Payne L.E. (1967). Bounds for the first derivatives of Green’s function. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 42(8): 604–610
  4. Byun S.-S. (2004). Elliptic equations with BMO coefficients in Lipschitz domains. Trans. Am. Math. Soc. 357: 1025–1046
  5. Iwaniec, T.: Integrability Theory, and the Jacobians. Lecture Notes. Universitaet Bonn (1995)
  6. Kellogg O.D. (1912). Harmonic functions and Green’s integral. Trans. Amer. Math. Soc. 13(1): 109–132
  7. Lanzani Loredana, Stein Eli, A note on div curl inequalities, 10.4310/mrl.2005.v12.n1.a6
  8. Lions J.L. and Magenes E. (1961). Problemi ai limiti non omogenei. (III). Ann. Scuola Norm. Sup. Pisa 15: 41–103
  9. Pommerenke, C.: Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften, vol. 299. Springer, Berlin (1992)
  10. Van Schaftingen Jean, Estimates for L1-vector fields, 10.1016/j.crma.2004.05.013
  11. Warschawski S. (1932). Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung. Math. Z. 35(1): 321–456