User menu

Interoperability of neuroscience modeling software: Current status and future directions

Bibliographic reference Cannon, Robert C. ; Gewaltig, Marc-Oliver ; Gleeson, Padraig ; Bhalla, Upinder S. ; Cornelis, Hugo ; et. al. Interoperability of neuroscience modeling software: Current status and future directions. In: NeuroInformatics, Vol. 5, no. 2, p. 127-138 (2007)
Permanent URL
  1. Baxter, S. M., Day, S. W., Fetrow, J. S., & Reisinger, S. J. (2006). Scientific software development is not an oxymoron. PLoS Comput Biol, 2, e87.
  2. Bednar, J. A., Choe, Y., De Paula, J., Miikkulainen, R., Provost, J., & Tversky, T. (2003). Modeling cortical maps with topographica. Neurocomputing, 58, 1129–1135.
  3. Bhalla, U. S. (2001). Modeling networks of signaling pathways. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 25–48). Boca Raton: CRC.
  4. Bower, J. M., & Beeman, D. (1998). The book of Genesis: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed.). New York: Springer.
  5. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007) Simulation of networks of spiking neurons: A review of tools and strategies. .
  6. Brunel, N., & Wang, X.-J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience, 11, 63–85.
  7. Cannon, R. C., Hasselmo, M. E., & Koene, R. A. (2003) From biophysics to behavior: Catacomb2 and the design of biologically plausible models for spatial navigation. Neuroinformatics, 1, 3–42.
  8. Carnevale Nicholas T., Hines Michael L., The NEURON Book, ISBN:9780511541612, 10.1017/cbo9780511541612
  9. Chen, C., & Hess, P. (1990). Mechanism of gating of T-type calcium channels. Journal of General Physiology, 96, 603–630. DOI 10.1085/jgp.96.3.603 .
  10. Crook, S., Beeman, D., Gleeson, P., & Howell, F. (2005). XML for model specification in neuroscience: An introduction and workshop summary. Brains, Minds, and Media, 1, bmm228 (urn:nbn:de:0009-3-2282).
  11. Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics, 5, (In press).
  12. Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., & Hunter, P. J. (2003). An overview of CellML 1.1, a biological model description language. Simulation, 79, 740–747.
  13. De Schutter, E., & Beeman, D. (1998). Speeding up GENESIS simulations. In J. M. Bower & D. Beeman (Eds.), The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed., pp. 329–347). Springer New York: Telos.
  14. De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje-cell .2. Simulation of synaptic responses. Journal of Neurophysiology, 71, 401–419.
  15. De Schutter, E., Ekeberg, Ö., Kotaleski, J. H., Achard, P., & Lansner, A. (2005). Biophysically detailed modelling of microcircuits and beyond. Trends in Neurosciences, 28, 562–569.
  16. Diesmann, M., & Gewaltig, M.-O. (2002). NEST: An environment for neural systems simulations in Forschung und wissenschaftliches Rechnen, GWDG-Bericht (pp 43–70). In T. Plesser & V. Macho (Eds.). Göttingen (D): Ges. fuer Wissenschaftliche Datenverarbeitung.
  17. Gardner, D., Toga, A. W., Ascoli, G. A., Beatty, J., Brinkley, J. F., Dale, A. M., et al. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 3, 286–289.
  18. Goddard, N. H., Beeman, D., Cannon, R. C., Cornelis, H., Gewaltig, M.-O., Hood, G., et al. (2002). NeuroML for plug and play neuronal modeling. Neurocomputing, 44, 1077–1081.
  19. Goddard, N., Hood, G., Howell, F., Hines, M., & De Schutter, E. (2001). NEOSIM: Portable large-scale plug and play modelling. Neurocomputing, 38, 1657–1661.
  20. Hille, B. (2001). Ionic channels of excitable membranes. Sunderland, MA: Sinauer Associates INC.
  21. Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.
  22. Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007.
  23. Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics, 19, 524–531. DOI 10.1093/bioinformatics/btg015 .
  24. Insel, T. R., Volkow, N. D., Li, T. K., Battey, J. F., & Landis, S. C. (2003). Neuroscience networks: Data-sharing in an information age. PLoS Biol, 1, e17. DOI 10.1371/journal.pbio.0000017 .
  25. Koslow, S. H. (2002). Sharing primary data: A threat or asset to discovery? Nature reviews. Neuroscience, 3, 311–313.
  26. Kötter, R., Nielse, P., Dyhrfjeld-Johnsen, J., Sommer, F. T., & Northoff, G. (2002). Multi-level neuron and network modeling in computational neuroanatomy. In G. Ascoli (Ed.), Computational neuroanatomy: Principles and methods. Totowa, NJ: Humana.
  27. Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., et al. (2006). BioModels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 34, D689–D691. DOI 10.1093/nar/gkj092 .
  28. Lloyd, W. J. (1994). Practical advantages of declarative programming. In Proc. Joint Conference on Declarative Programming, GULP-PRODE.
  29. Migliore, M., Morse, T. M., Davison, A. P., Marenco, L., Shepherd, G. M., Hines, M. L., et al. (2003). ModelDB: Making models publicly accessible to support computational neuroscience. Neuroinformatics, 1, 135–139.
  30. Roth, A., Nusser, Z., & Häusser, M. (2000). Monte Carlo simulations of synaptic transmission in detailed three-dimensional reconstructions of cerebellar neuropil. European Journal of Neuroscience, 12(Suppl. 11), 14.
  31. Schwab, M., Karrenbach, M., & Claerbout, J. (2000). Making scientific computations reproducible. Computing in Science & Engineering, 2, 61–67.
  32. Stiles, J. R., & Bartol, T. M. (2001). Methods for simulating realistic synaptic microphysiology using MCell. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 87–127). Boca Raton: CRC.
  33. Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E. N., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.
  34. Traub, R. D., Jefferys, J. G. R., Miles, R., Whittington, M. A., & Toth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neuron. Journal of Physiology (London. Print), 481, 7995.
  35. Vandenberg, C. A., & Bezanilla, F. (1991). A sodium-channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant-axon. Biophysical Journal, 60, 1511–1533.