Simar, Aude
[UCL]
Pardoen, Thomas
[UCL]
de Meester, B.
A finite element pseudosteady state thermal model takes the mechanical power as input data while distributing the total power input between surface and volume heat sources. A simple model for the material flow around the tool has been developed in order to take heat convection into account based on the shape of the thermomechanically affected zone. The model is assessed for a large number of different welding parameters. Special attention is given to the type of contact at the tool/workpiece interface, i.e. sliding, sticking or both and at the workpiece backing plate interface. The rotational material flow creates asymmetry in the temperature distribution between the two sides of the weld.
- Zahedul M., J. Mater. Process. Manuf. Sci, 10, 91 (2000)
- Khandkar M. Z. H., Khan J. A., Reynolds A. P., Prediction of temperature distribution and thermal history during friction stir welding: input torque based model, 10.1179/136217103225010943
- TANG W., GUO X., McCLURE J. C., MURR L. E., NUNES A., Heat Input and Temperature Distribution in Friction Stir Welding, 10.1106/55tf-pf2g-jbh2-1q2b
- Seidel T. U., Reynolds A. P., Two-dimensional friction stir welding process model based on fluid mechanics, 10.1179/136217103225010952
- Colegrove P. A., Shercliff H. R., Two-dimensional CFD modelling of flow round profiled FSW tooling, 10.1179/136217104225021832
- Colegrove P.A., Shercliff H.R., Development of Trivex friction stir welding tool Part 1 – two-dimensional flow modelling and experimental validation, 10.1179/136217104225021670
- Ulysse P., Three-dimensional modeling of the friction stir-welding process, 10.1016/s0890-6955(02)00114-1
- Heurtier P., Jones M.J., Desrayaud C., Driver J.H., Montheillet F., Allehaux D., Mechanical and thermal modelling of Friction Stir Welding, 10.1016/j.jmatprotec.2005.07.014
- Lambrakos S. G., Sci. Technol. Weld. Join, 8, 385 (2003)
- De Vuyst T., Weld. World, 3 (2005)
- Kumar A., Weld. World, 3 (2005)
- Simar A., Lecomte-Beckers J., Pardoen T., de Meester B., Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding, 10.1179/174329306x84409
- Dong P., Lu F., Hong J.K., Cao Z., Coupled thermomechanical analysis of friction stir welding process using simplified models, 10.1179/136217101101538884
- Lambrakos S. G., Fonda R. W., Milewski J. O., Mitchell J. E., Analysis of friction stir welds using thermocouple measurements, 10.1179/136217103225005624
- CHAO YUH J., QI XINHAI, Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6, 10.1106/ltkr-jfbm-rgmv-wvcf
- Colegrove P. A., Shercliff H. R., Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds, 10.1179/136217103225005534
- Xu S., deng X., Reynolds A.P., Seidel T.U., Finite element simulation of material flow in friction stir welding, 10.1179/136217101101538640
Bibliographic reference |
Simar, Aude ; Pardoen, Thomas ; de Meester, B.. Effect of rotational material flow on temperature distribution in friction stir welds. In: Science and Technology of Welding and Joining, Vol. 12, no. 4, p. 324-333 (2007) |
Permanent URL |
http://hdl.handle.net/2078.1/37309 |