User menu

Bayesian data fusion in a spatial prediction context: a general formulation

Bibliographic reference Bogaert, Patrick ; Fasbender, Dominique. Bayesian data fusion in a spatial prediction context: a general formulation. In: Stochastic Environmental Research and Risk Assessment, Vol. 21, no. 6, p. 695-709 (2007)
Permanent URL
  1. Altinçay H (2005) On naive Bayesian fusion of dependent classifiers. Pattern Recognit Lett 26:2463–2473
  2. Bogaert P, D’Or D (2003) Estimating soil properties from thematic soil maps: the Bayesian maximum entropy approach. Soil Sci Soc Am J 66:1492–1500
  3. Chilès J-P, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York, 720 p
  4. Cho S, Beak S, Kim JS (2003) Exploring artificial intelligence-based data fusion for conjoint analysis. Expert Syst Appl 24:287–294
  5. Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York, 304 p. (3nd Reprint, 2001)
  6. Christakos G (2002) On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian techniques. Adv Water Resour 25:1257–1274
  7. Christakos G, Bogaert P, Serre ML (2002) Temporal GIS (with CD-ROM). Springer, Berlin Heidelberg New York, NY, 220 p
  8. Costantini M, Farina A, Zirilli F (1997) The fusion of different resolution SAR images. In: Proceedings of the IEEE 85, pp 139–146
  9. Cover T, Joy A (2006) Elements of information theory, 2nd edn. Wiley, New York, 748 pp
  10. Cremer F, Schutte K, Schavemaker JGM, den Breejen E (2001) A comparison of decision-level sensor-fusion methods for anti-personnel land mine detection. Inf Fusion 2:187–208
  11. Cressie N (1993) Statistics for spatial data, revised edition. Wiley, New York, 928 p
  12. D’Or D, Bogaert P (2004) Spatial prediction of categorical variables with the Bayesian maximum entropy approach: the Ooypolder case study. Eur J Soil Sci 55:763-776
  13. Duc B, Bigün ES, Bigün J, Maître G, Fischer S (1997) Fusion of audio and video information for multi modal person authentification. Pattern Recognit Lett 18:835–843
  14. Fassinut-Mombot B, Choquel J-B (2004) A new probabilistic and entropy fusion approach for management of information sources. Inf Fusion 5:35–47
  15. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York, 483 p
  16. Gros XE, Bousigue J, Takahashi K (1999) NDT data fusion at the pixel level. NDT E Int 32:283–292
  17. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge, 758 p
  18. Jones GD, Allsop RE, Gilby JH (2003) Bayesian analysis for fusion of data from disparate imaging systems for surveillance. Image Vis Comput 21:843-849
  19. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86
  20. Kuncheva LI (2004) Combining pattern classifiers methods and algorithms. Wiley, New York, 350 p
  21. Lewis D (1998) Naive (Bayes) at forty: the independence assumption in information retrieval. Conference proceedings of the European Conference on Machine Learning, Springer, Berlin Heidelberg New York, pp 4–15
  22. Melgani F, Serpico SB (2002) A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images. Patter Recognit Lett 23:1053–1061
  23. Neter J, Kutner MH, Wasserman W (1996) Applied linear statistical models. McGraw-Hill/Irwin, 1408 p
  24. Papoulis A (1991) Probability, random variables, and stochastic processes. McGraw-Hill, 3rd edn, 666 p
  25. Pradalier C, Colas F, Bessiere P (2003) Expressing Bayesian fusion as a product of distributions: application in robotics. In: Proceedings IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA
  26. van der Putten P, Kok JN, Gupta A (2002) Why the information explosion can be bad for data mining, and how data fusion provides a way out. In: Proceedings of the Second SIAM International Conference on Data Mining, Arlington, USA
  27. Rässler S (2004) Data fusion: identification problems, validity, and multiple imputation. Aust J Stat 33:153–171
  28. Ross A, Jain A (2003) Information fusion in biometrics. Pattern Recognit Lett 24:2115–2125
  29. Savelievaa E, Demyanova V, Kanevski M, Serre M, Christakos G (2005) BME-based uncertainty assessment of the Chernobyl fallout. Geoderma 128:312–324
  30. Simone G, Farina A, Morabito FC, Serpico SB, Bruzzone L (2002) Image fusion techniques for remote sensing applications. Inf Fusion 3:3–15
  31. Sohn SY, Lee SH (2003) Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea. Saf Sci 41:1–14
  32. Song XB, Abu-Mostafa Y, Sill J, Kasdan H, ad Pavel M (2003) Robust image recognition by fusion of contextual information. Inf Fusion 3:277–287
  33. Wackernagel H (1995) Multivariate Geostatistics. Springer, Berlin Heidelberg New York, 291 p
  34. Wikle CK, Milliff RF, Nychka D, Berliner LM (2001) Spatial-temporal hierarchical Bayesian modeling: tropical ocean surface winds. J Am Stat Assoc 96:382–397