User menu

The oxidase DsbA folds a protein with a nonconsecutive disulfide

Bibliographic reference Messens, Joris ; Collet, Jean-François ; Van Belle, Karolien ; Brosens, Elke ; Loris, Remy ; et. al. The oxidase DsbA folds a protein with a nonconsecutive disulfide. In: Journal of Biological Chemistry, Vol. 282, no. 43, p. 31302-31307 (2007)
Permanent URL
  2. Bessette Paul H., Cotto José J., Gilbert Hiram F., Georgiou George, In Vivoandin VitroFunction of theEscherichia coliPeriplasmic Cysteine Oxidoreductase DsbG, 10.1074/jbc.274.12.7784
  3. Andersen Catherine L., Matthey-Dupraz Anne, Missiakas Dominique, Raina Satish, A newEscherichia coligene,dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins, 10.1046/j.1365-2958.1997.5581925.x
  4. Rietsch A, Bessette P, Georgiou G, Beckwith J, Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin., 10.1128/jb.179.21.6602-6608.1997
  5. Sun Xiu-xia, Wang Chih-chen, The N-terminal Sequence (Residues 1–65) Is Essential for Dimerization, Activities, and Peptide Binding ofEscherichia coliDsbC, 10.1074/jbc.m002406200
  6. Zapun Andre, Missiakas Dominique, Raina Satish, Creighton Thomas E., Structural and Functional Characterization of DsbC, a Protein Involved in Disulfide Bond Formation in Escherichia coli, 10.1021/bi00015a019
  7. HINIKER A, BARDWELL J, Disulfide relays between and within proteins: the Ero1p structure, 10.1016/j.tibs.2004.08.002
  8. Jia Zongchao, Lim Daniel, Golovan Serguei, Forsberg Cecil W., 10.1038/72371
  9. Marcyjaniak Malgorzata, Odintsov Sergey G., Sabala Izabela, Bochtler Matthias, Peptidoglycan Amidase MepA Is a LAS Metallopeptidase, 10.1074/jbc.m406735200
  10. Hiniker Annie, Bardwell James C. A., In VivoSubstrate Specificity of Periplasmic Disulfide Oxidoreductases, 10.1074/jbc.m311391200
  11. Berkmen M., Boyd D., Beckwith J., The Nonconsecutive Disulfide Bond of Escherichia coli Phytase (AppA) Renders It Dependent on the Protein-disulfide Isomerase, DsbC, 10.1074/jbc.m411774200
  12. Peek J. A., Taylor R. K., Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae., 10.1073/pnas.89.13.6210
  13. Padmanabhan Savita, Zhou Kangjing, Chu Cindy Y., Lim Robert W., Lim Louis W., Overexpression, Biophysical Characterization, and Crystallization of Ribonuclease I from Escherichia coli, a Broad-Specificity Enzyme in the RNase T2 Family, 10.1006/abbi.2001.2359
  14. Wright S.Kirk, Viola Ronald E., Evaluation of Methods for the Quantitation of Cysteines in Proteins, 10.1006/abio.1998.2858
  15. Greiner-Stoeffele Thomas, Grunow Marlis, Hahn Ulrich, A General Ribonuclease Assay Using Methylene Blue, 10.1006/abio.1996.0326
  16. Otwinowski Zbyszek, Minor Wladek, [20] Processing of X-ray diffraction data collected in oscillation mode, Methods in Enzymology (1997) ISBN:9780121821777 p.307-326, 10.1016/s0076-6879(97)76066-x
  17. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S., Read R. J., Rice L. M., Simonson T., Warren G. L., Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination, 10.1107/s0907444998003254
  18. Miller, J. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Press, Cold Spring Harbor, NY
  19. Ewis Hosam E., Lu Chung-Dar, Osmotic shock: A mechanosensitive channel blocker can prevent release of cytoplasmic but not periplasmic proteins, 10.1016/j.femsle.2005.09.046
  20. Ida Koh, Norioka Shigemi, Yamamoto Masaki, Kumasaka Takashi, Yamashita Eiki, Newbigin Ed, Clarke Adrienne E, Sakiyama Fumio, Sato Mamoru, The 1.55 Å resolution structure of Nicotiana alata SF11-RNase associated with gametophytic self-incompatibility, 10.1006/jmbi.2001.5127
  21. J. Biol. Chem., 236, 422 (1961)
  22. Hiniker Annie, Collet Jean-Francois, Bardwell James C. A., Copper Stress Causes anin VivoRequirement for theEscherichia coliDisulfide Isomerase DsbC, 10.1074/jbc.m505742200
  23. EMBO J., 11, 57 (1992)
  24. J. Biol. Chem., 259, 11651 (1984)
  25. Schafer Freya Q., Buettner Garry R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, 10.1016/s0891-5849(01)00480-4
  26. Pittman Marc S., Robinson Hilary C., Poole Robert K., A Bacterial Glutathione Transporter (Escherichia coliCydDC) Exports Reductant to the Periplasm, 10.1074/jbc.m503075200
  27. Joly John C., Swartz James R., In Vitroandin VivoRedox States of theEscherichia coliPeriplasmic Oxidoreductases DsbA and DsbC, 10.1021/bi9707739
  28. Bardwell James C.A., McGovern Karen, Beckwith Jon, Identification of a protein required for disulfide bond formation in vivo, 10.1016/0092-8674(91)90532-4
  29. J. Biol. Chem., 241, 1562 (1966)
  30. Freedman R. B., Klappa P., Ruddock L. W., Protein disulfide isomerases exploit synergy between catalytic and specific binding domains, 10.1093/embo-reports/kvf035
  31. Messens Joris, Collet Jean-François, Pathways of disulfide bond formation in Escherichia coli, 10.1016/j.biocel.2005.12.011
  32. EMBO J., 13, 2013 (1994)
  33. EMBO J., 13, 2007 (1994)