User menu

Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum

Bibliographic reference Fiocco, D. ; Capozzi, V. ; Goffin, P. ; Hols, Pascal ; Spano, Giuseppe. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. In: Applied Microbiology and Biotechnology, Vol. 77, no. 4, p. 909-915 (2007)
Permanent URL
  1. Altermann E, Russell WM, Azcarate-Peril MA et al (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102:3906–3912
  2. Aukrust T, Brurberg MB, Nes IF (1995) Transformation of Lactobacillus by electroporation. Methods Mol Biol 47:201–208
  3. Bolotin A, Quinquis B, Renault P, Sorokin A et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558
  4. Brady JP, Garland D, Duglas-Tabor Y, Robison WGJ, Groome A, Wawrousek EF (1997) Targeted disruption of the mouse αA-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein αB-crystallin. Proc Natl Acad Sci USA 94:884–889
  5. Bron PA, Sally M, Hoffer I, Van Swam I, De Vos WM, Kleerebezem M (2004) Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using alanine racemase as a promoter probe. Appl Environ Microbiol 70:310–317
  6. Caspers GJ, Leunissen JAM, de Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved ‘α-crystallin domain’. J Mol Evol 40:238–248
  7. da Silveira MG, Baumgärtner M, Rombouts FM, Abee T (2004) Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70:2748–2755
  8. Derzelle S, Hallet B, Ferain T, Delcour J, Hols P (2003) Improved adaptation to cold shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold shock proteins. Appl Environ Microbiol 69:4285–4290
  9. Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70:5929–5936
  10. El Demerdash HA, Heller KJ, Geis A (2003) Application of the shsp gene, encoding a small heat shock protein, as a food-grade selection marker for lactic acid bacteria. Appl Environ Microbiol 69:4408–12
  11. Gandhi M, Chikindas ML (2007) Listeria: A foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15
  12. Goffin P, Deghorain M, Mainardi JL, Tytgat I, Champomier-Verge MC, Kleerebezem M, Hols P (2005) Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J Bacteriol 187:6750–6761
  13. Guzzo J, Jobin MP, Delmas F, Fortier LC, Garmyn D, Tourdot-Marechal R, Lee B, Divies C (2000) Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int J Food Microbiol 55:27–31
  14. Hecker M, Schumann W, Volker U (1996) Heat shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428
  15. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520
  16. Jobin MB, Delmas F, Garmyn D, Diviès C, Guzzo J (1997) Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos. Appl Environ Microbiol 63:609–614
  17. Kleerebezem M, Boekhorst J, Kranenburg R et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995
  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
  19. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–333
  20. Narberhaus F (2002) α-Crystallin-Type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93
  21. O'Sullivan T, van Sinderen D, Fitzgerald G (1999) Structural and functional analysis of pCI65st, a 6.5 kb plasmid from Streptococcus thermophilus NDI-6. Microbiol 145:127–34
  22. Pridmore RD, Berger B, Desiere F et al (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512–2517
  23. Rosen R, Ron EZ (2002) Proteome analysis in the study of the bacterial heat shock response. Mass Spectr Rev 21:244–265
  24. Sambrook JE, Fritsch F, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  25. Spano G, Massa S (2006) Environmental stress response in wine Lactic Acid Bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 32:77–86
  26. Spano G, Capozzi V, Vernile A, Massa S (2004) Cloning, molecular characterization and expression analysis of two small heat shock genes isolated from wine Lactobacillus plantarum. J Appl Microbiol 97:774–782
  27. Spano G., Beneduce L., Perrotta C., Massa S., Cloning and characterization of the hsp 18.55 gene, a new member of the small heat shock gene family isolated from wine Lactobacillus plantarum, 10.1016/j.resmic.2004.09.014
  28. Tasara T, Stephan R (2006) Cold Stress Tolerance of Listeria monocytogenes: A Review of Molecular Adaptive Mechanisms and Food Safety Implications. J Food Prot 69:1473–1484
  29. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol 69:4951–4965
  30. van de Guchte M, Penaud S, Grimaldi C et al (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9279