User menu

Multiphysics modeling and optimization of mechatronic multibody systems

Bibliographic reference Samin, Jean-Claude ; Bruels, O. ; Collard, Jean-François ; Sass, L. ; Fisette, Paul. Multiphysics modeling and optimization of mechatronic multibody systems. In: Multibody System Dynamics, Vol. 18, no. 3, p. 345-373 (2007)
Permanent URL
  1. Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT 24, 482–502 (1984)
  2. Arnold, M.: Numerically stable modular time integration of multiphysical systems. In: Bathe, K.J. (ed.) Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, MA, June 2001, pp. 1062–1064. Elsevier, Amsterdam (2001)
  3. Rükgauer, A., Schiehlen, W.: Simulation of modular dynamic systems. Comput. Struct. 46, 535–542 (1998)
  4. Veitl, A., Gordon, T., Van De Sand, A., Howell, M., Valásek, M., Vaculin, O., Steinbauer, P.: Methodologies for coupling simulation models and codes in mechatronic system analysis and design. Veh. Syst. Dyn. 33, 231–243 (1999)
  5. Valásek, M., Breedveld, P., Sika, Z., Vampola, T.: Software tools for mechatronic vehicles: Design through modelling and simulation. Veh. Sys. Dyn. 33, 214–230 (1999)
  6. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6(2), 93–113 (2000)
  7. Da Silva, M., Brüls, O., Paijmans, B., Desmet, W., Van Brussel, H.: Concurrent simulation of mechatronic systems with variable mechanical configuration. In: Proc. of ISMA 2006, Leuven, Belgium, September 2006
  8. Van Brussel, H.: Mechatronics—a powerful concurrent engineering framework. IEEE/ASME Trans. Mechatron. 1(2), 127–136 (1996)
  9. Elmqvist, H., Mattson, S.E., Otter, M.: Modelica—the new object-oriented modeling language. In: Proc. of the 12th European Simulation Multiconference (ESM’98), June 1998
  10. Tiller Michael, Introduction to Physical Modeling with Modelica, ISBN:9781461356158, 10.1007/978-1-4615-1561-6
  11. Koenig, H.E., Tokad, Y., Kesavan, H.K., Hedges, H.G.: Analysis of Discrete Physical Systems. McGraw–Hill, New York (1967)
  12. Sass, L.: Symbolic modeling of electromechanical multibody systems. Ph.D. thesis, Université Catholique de Louvain (2004), available at
  13. Paynter, H.: Analysis and Design of Engineering Systems. MIT Press, Cambridge (1961)
  14. Karnopp, D., Margolis, D.L., Rosenberg, R.C.: System Dynamics: Modeling and Simulation of Mechatronic Systems, 3rd edn. Wiley, New York (2000)
  15. Bonderson L. S., Vector Bond Graphs Applied to One-Dimensional Distributed Systems, 10.1115/1.3426876
  16. Ingrim, M.E., Masada, G.Y.: The extended bond-graph notation. J. Dyn. Syst. Meas. Control 113, 113–117 (1991)
  17. Karnopp, D.: Understanding multibody dynamics using bond graph representations. J. Frankl. Inst. B 334(4), 631–642 (1997)
  18. Favre, W.: Contribution à la représentation bond graph des systèmes mécaniques multicorps. PhD thesis, INSA de Lyon (1997)
  19. McPhee, J.J.: On the use of linear graph theory in multibody system dynamics. Nonlinear Dyn. 9, 73–90 (1996)
  20. McPhee, J.J.: Automatic generation of motion equations for planar mechanical systems using the new set of “branch coordinates”. Mech. Mach. Theory 33(6), 805–823 (1998)
  21. McPhee J. J., Virtual Prototyping of Multibody Systems With Linear Graph Theory and Symbolic Computing, Virtual Nonlinear Multibody Systems (2003) ISBN:9781402013409 p.37-56, 10.1007/978-94-010-0203-5_3
  22. Scherrer, M., McPhee, J.: Dynamic modelling of electromechanical multibody systems. Multibody Syst. Dyn. 9, 87–115 (2003)
  23. Shi, P., McPhee, J.: Dynamics of flexible multibody systems using virtual work and linear graph theory. Multibody Syst. Dyn. 4, 355–381 (2000)
  24. Shi, P., McPhee, J., Heppler, G.: A deformation field for Euler–Bernoulli beams with applications to flexible multibody dynamics. Multibody Syst. Dyn. 5, 79–104 (2001)
  25. Schmitke, C., McPhee, J.: Modelling mechatronic multibody systems using symbolic subsystems models. In: Proc. of the ECCOMAS Conf. on Advances in Computational Multibody Systems, Lisbon, Portugal, July 2003
  26. Hadwitch, V., Pfeiffer, K.: The principle of virtual work in mechanical and electromechanical systems. Arch. Appl. Mech. 65, 390–400 (1995)
  27. Maisser, P., Enge, O., Freundenberg, G., Kielau, G.: Electromechanical interactions in multibody systems containing electromechanical drives. Multibody Syst. Dyn. 1(3), 281–302 (1997)
  28. Rochus, V., Rixen, D., Golinval, J.C.: Monolithic modelling of electromechanical coupling in microstructures. Int. J. Numer. Method. Eng. 65, 461–493 (2005)
  29. Rochus, V.: Finite element modelling of strong electro-mechanical coupling in MEMS. PhD thesis, University of Liège (2006)
  30. Fisette, P.: Génération symbolique des equations du mouvement de systèmes multicorps et application dans le domaine ferroviaire. PhD thesis, Université Catholique de Louvain (1994)
  31. Fisette P., Samin J. C., ROBOTRAN: Symbolic Generation of Multi-Body System Dynamic Equations, Advanced Multibody System Dynamics (1993) ISBN:9789048142538 p.373-378, 10.1007/978-94-017-0625-4_21
  32. Samin Jean-Claude, Fisette Paul, Symbolic Modeling of Multibody Systems, ISBN:9789048164257, 10.1007/978-94-017-0287-4
  33. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME J. Mech. Des. 104, 247–255 (1982)
  34. Fisette, P., Péterkenne, J.M., Vaneghem, B., Samin, J.C.: A multibody loop constraints approach for modelling cam/follower devices. Nonlinear Dyn. 22, 335–359 (2000)
  35. Telteu, D., Grenier, D., Fisette, P., Labrique, F.: Modélisation et Simulation des Convertisseurs Electroniques de Puissance par Analogie avec les Systèmes Mécaniques. Rev. Int. Génie Electr. (RIGE) 3–4, 429–456 (2003)
  36. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)
  37. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn. SIAM, Philadelphia (1996)
  38. Hairer Ernst, Wanner Gerhard, Solving Ordinary Differential Equations II, ISBN:9783642052200, 10.1007/978-3-642-05221-7
  39. Brüls, O.: Integrated Simulation and Reduced-Order Modeling of Controlled Flexible Multibody Systems. PhD thesis, University of Liège, Belgium (2005)
  40. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Method. Appl. Mech. Eng. 1, 1–16 (1972)
  41. Gear, C.W., Leimkuhler, B., Gupta, G.K.: Automatic integration of Euler–Lagrange equations with constraints. J. Comput. Appl. Math. 12–13, 77–90 (1985)
  42. Führer, C., Leimkuhler, B.J.: Numerical solution of differential-algebraic equations for constrained mechanical motion. Numer. Math. 59, 55–69 (1991)
  43. Fisette, P., Vaneghem, B.: Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme. Comput. Method. Appl. Mech. Eng. 135, 85–105 (1996)
  44. Yen, J.: Constrained equations of motion in multibody dynamics as odes on manifolds. SIAM J. Numer. Anal. 30, 553–568 (1993)
  45. Sass, L., McPhee, J., Schmitke, C., Fisette, P., Grenier, D.: A comparison of different methods for modelling electromechanical multibody systems. Multibody Syst. Dyn. 12(3), 209–250 (2004)
  46. Cardona, A., Klapka, I., Géradin, M.: Design of a new finite element programming environment. Eng. Comput. 11, 365–381 (1994)
  47. Duym, S., Reybrouck, K.: Physical characterization of nonlinear shock absorber dynamics. Eur. J. Mech. Eng. 43(4), 181–188 (1998)
  48. Lauwerys, C., Swevers, J., Sas, P.: Model free design for a semi-active suspension of a passenger car. In: Proc. of ISMA 2004, Leuven, Belgium, September 2004
  49. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. ASME J. Appl. Mech. 60, 371–375 (1993)
  50. Brüls, O., Duysinx, P., Golinval, J.-C.: A unified finite element framework for the dynamic analysis of controlled flexible mechanisms. In: Proc. of the ECCOMAS Conf. on Advances in Computational Multibody Dynamics, Madrid, Spain, June 2005
  51. Wong, J.Y.: Theory of Ground Vehicles, 3rd edn. Wiley, New York (2001)
  52. Baumal, A.E., McPhee, J.J., Calamai, P.H.: Application of genetic algorithms to the design optimization of an active suspension system. Comput. Method. Appl. Mech. Eng. 163, 87–94 (1998)
  53. Els, P.S., Uys, P.E.: Applicability of the dynamic-Q optimization algorithm to vehicle suspension design. Math. Comput. Model. 37, 1029–1046 (2003)
  54. Collard, J.-F., Fisette, P., Duysinx, P.: Contribution to the optimization of closed-loop multibody systems: Application to parallel manipulators. Multibody Syst. Dyn. 13, 69–84 (2005)
  55. Brüls, O., Duysinx, P., Golinval, J.C.: The global modal parameterization for nonlinear model-order reduction in flexible multibody dynamics. Int. J. Numer. Methods Eng. 69, 948–977 (2007)