User menu

Density and hazard rate estimation for censored and alpha-mixing data using gamma kernels

Bibliographic reference Bouezmarni, Taoufik ; Rombouts, Jeroen. Density and hazard rate estimation for censored and alpha-mixing data using gamma kernels. In: Journal of Nonparametric Statistics, Vol. 20, no. 7, p. 627-643 (2008)
Permanent URL
  1. Bijwaard G., Medium Econometrische Toepassingen, 1, 26 (2004)
  2. Chen Songnian, Dahl Gordon B, Khan Shakeeb, Nonparametric Identification and Estimation of a Censored Location-Scale Regression Model, 10.1198/016214504000000836
  3. Lipsitz S. R., Estimation with correlated censored survival data with missing covariates, 10.1093/biostatistics/1.3.315
  4. Yin Guosheng, Cai Jianwen, Quantile Regression Models with Multivariate Failure Time Data, 10.1111/j.0006-341x.2005.030815.x
  5. Zeger Scott L., Brookmeyer Ron, Regression Analsis with Censored Autocorrelated Data, 10.2307/2289003
  6. Jones M. C., Simple boundary correction for kernel density estimation, 10.1007/bf00147776
  7. Doukhan, P. 1994. “Mixing: Properties and Examples”. Vol. 85, New York: Springer-Verlag.
  8. Carrasco Marine, Chernov Mikhail, Florens Jean-Pierre, Ghysels Eric, Efficient estimation of general dynamic models with a continuum of moment conditions, 10.1016/j.jeconom.2006.07.013
  9. Kaplan E. L., Meier Paul, Nonparametric Estimation from Incomplete Observations, 10.2307/2281868
  10. Breslow N., Crowley J., A Large Sample Study of the Life Table and Product Limit Estimates Under Random Censorship, 10.1214/aos/1176342705
  11. Lo S., Probab. Theory Relat. Fields, 71, 318 (1985)
  12. Wang Jia-Gang, A Note on the Uniform Consistency of the Kaplan-Meier Estimator, 10.1214/aos/1176350507
  13. Stute W., Wang J.-L., The Strong Law under Random Censorship, 10.1214/aos/1176349273
  14. Ying Z., Wei L.J., The Kaplan-Meier Estimate for Dependent Failure Time Observations, 10.1006/jmva.1994.1031
  15. Cai Zongwu, Roussas George G., Kaplan–Meier Estimator under Association, 10.1006/jmva.1998.1769
  16. Leonenko Nikolai N., Sakhno Ludmila M., 10.1023/a:1017546623620
  17. Cai Zongwu, Estimating a Distribution Function for Censored Time Series Data, 10.1006/jmva.2000.1953
  18. Cai Zongwu, Asymptotic properties of Kaplan-Meier estimator for censored dependent data, 10.1016/s0167-7152(97)00141-7
  19. Tanner Martin A., Wong Wing Hung, The Estimation of the Hazard Function from Randomly Censored Data by the Kernel Method, 10.1214/aos/1176346265
  20. Mielniczuk Jan, Some Asymptotic Properties of Kernel Estimators of a Density Function in Case of Censored Data, 10.1214/aos/1176349954
  21. Lo S. H., Mack Y. P., Wang J. L., Density and hazard rate estimation for censored data via strong representation of the Kaplan-Meier estimator, 10.1007/bf01794434
  22. Cai Zongwu, Kernel Density and Hazard Rate Estimation for Censored Dependent Data, 10.1006/jmva.1998.1752
  23. Liebscher E., Probab. Theory Relat. Fields, 67, 318 (2002)
  24. Schuster Eugene F., Incorporating support constraints into nonparametric estimators of densities, 10.1080/03610928508828965
  25. Müller H., Biometrika, 78, 521 (1991)
  26. Lejeune Michel, Sarda Pascal, Smooth estimators of distribution and density functions, 10.1016/0167-9473(92)90061-j
  27. Jones M., Statist. Sinica, 6, 1005 (1996)
  28. Marron J., J. R. Stat. Soc. Ser. B, 56, 653 (1994)
  29. Chen Song Xi, Probability Density Function Estimation Using Gamma Kernels, 10.1023/a:1004165218295
  30. Scaillet O., Density estimation using inverse and reciprocal inverse Gaussian kernels, 10.1080/10485250310001624819