User menu

Primal central paths and Riemannian distances for convex sets

Bibliographic reference Nesterov, Yurii ; Nemirovski, A.. Primal central paths and Riemannian distances for convex sets. In: Foundations of Computational Mathematics, Vol. 8, no. 5, p. 533-560 (2008)
Permanent URL
  1. A. Edelman, T. Arias, S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)
  2. S. Helgason, Differential Geometry and Symmetric Spaces (American Mathematical Society, Providence, 2000)
  3. M. Koecher, Positivitätsbereiche im R n . Am. J. Math. 79, 575–596 (1957)
  4. Nesterov Yurii, Introductory Lectures on Convex Optimization, ISBN:9781461346913, 10.1007/978-1-4419-8853-9
  5. Nesterov Yurii, Nemirovskii Arkadii, Interior-Point Polynomial Algorithms in Convex Programming, ISBN:9780898713190, 10.1137/1.9781611970791
  6. Yu. Nesterov, M.J. Todd, On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2(4), 333–361 (2002)
  7. Yu. Nesterov, M.J. Todd, Y. Ye, Infeasible-start primal-dual methods and infeasibility detectors. Math. Program. 84, 227–267 (1999)
  8. O. Rothaus, Domains of positivity. Abh. Math. Sem. Univ. Hamburg 24, 189–235 (1960)
  9. K. Tanabe, Geometric method in nonlinear programming. J. Optim. Theory Appl. 30, 181–210 (1980)
  10. Wright Stephen J., Primal-Dual Interior-Point Methods, ISBN:9780898713824, 10.1137/1.9781611971453