User menu

Hypothetical three-dimensional all-sp2 carbon phase

Bibliographic reference Rignanese, Gian-Marco ; Charlier, Jean-Christophe. Hypothetical three-dimensional all-sp2 carbon phase. In: Physical Review B, Vol. 78, no. 12, p. 125415 (2008)
Permanent URL
  1. Novoselov K. S., Electric Field Effect in Atomically Thin Carbon Films, 10.1126/science.1102896
  2. Kroto H. W., Heath J. R., O'Brien S. C., Curl R. F., Smalley R. E., C60: Buckminsterfullerene, 10.1038/318162a0
  3. Iijima Sumio, Helical microtubules of graphitic carbon, 10.1038/354056a0
  4. Hoffmann Roald, Hughbanks Timothy, Kertesz Miklos, Bird Peter H., Hypothetical metallic allotrope of carbon, 10.1021/ja00352a049
  5. Liu Amy Y., Cohen Marvin L., Hass K. C., Tamor M. A., Structural properties of a three-dimensional all-sp2phase of carbon, 10.1103/physrevb.43.6742
  6. Liu Amy Y., Cohen Marvin L., Theoretical study of a hypothetical metallic phase of carbon, 10.1103/physrevb.45.4579
  7. Côté Michel, Grossman Jeffrey C., Cohen Marvin L., Louie Steven G., Theoretical study of a three-dimensional all-sp2structure, 10.1103/physrevb.58.664
  8. T. Sunada, Not. Am. Math. Soc., 55, 208 (2008)
  9. Troullier N., Martins José Luriaas, Efficient pseudopotentials for plane-wave calculations, 10.1103/physrevb.43.1993
  10. Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., Allan D.C., First-principles computation of material properties: the ABINIT software project, 10.1016/s0927-0256(02)00325-7
  11. Monkhorst Hendrik J., Pack James D., Special points for Brillouin-zone integrations, 10.1103/physrevb.13.5188
  12. Methfessel M., Paxton A. T., High-precision sampling for Brillouin-zone integration in metals, 10.1103/physrevb.40.3616
  13. Rocquefelte X., Rignanese G.-M., Meunier V., Terrones H., Terrones M., Charlier J.-C., How to Identify Haeckelite Structures: A Theoretical Study of Their Electronic and Vibrational Properties, 10.1021/nl049879x
  14. Blase X., Gillet Philippe, San Miguel A., Mélinon P., Exceptional Ideal Strength of Carbon Clathrates, 10.1103/physrevlett.92.215505
  15. Umemoto Koichiro, Saito Susumu, Berber Savas, Tománek David, Carbon foam: Spanning the phase space between graphite and diamond, 10.1103/physrevb.64.193409
  16. Kuc Agnieszka, Seifert Gotthard, Hexagon-preserving carbon foams: Properties of hypothetical carbon allotropes, 10.1103/physrevb.74.214104
  17. Marzari Nicola, Vanderbilt David, Maximally localized generalized Wannier functions for composite energy bands, 10.1103/physrevb.56.12847
  18. J.-C. Charlier, Carbon Nanotubes (2008)
  19. J.-C. Charlier, Top. Appl. Phys., 111, 673709 (2008)
  20. Charlier J.-C., Gonze X., Michenaud J.-P., First-principles study of the electronic properties of graphite, 10.1103/physrevb.43.4579
  21. Haddon R.C., GVB and POAV analysis of rehybridization and π-orbital misalignment in non-planar conjugated systems, 10.1016/0009-2614(86)87055-5
  22. Haddon R. C., Hybridization and the orientation and alignment of .pi.-orbitals in nonplanar conjugated organic molecules: .pi.-orbital axis vector analysis (POAV2), 10.1021/ja00271a009
  23. Wallace P. R., The Band Theory of Graphite, 10.1103/physrev.71.622
  24. Grossman Jeffrey C, Côté Michel, Louie Steven G, Cohen Marvin L, Electronic and structural properties of molecular C36, 10.1016/s0009-2614(97)01433-4
  25. Takagi Y., Fujita M., Igami M., Kusakabe K., Wakabayashi K., Nakada K., Electronic Structure and Surface-Localized State of Hyper-Graphite Network, 10.1016/s0379-6779(98)00698-5
  26. Takagi Yoshiteru, Fujita Mitsutaka, Kusakabe Koichi, A Possible Superstructure: Hyper Graphite, 10.1080/10587250008025496
  27. D. C. Palmer, Computer Program CrystalDiffract 5.1.6 (2008)