Adler, Mark
Van Moerbeke, Pierre
[UCL]
Vanhaecke, Pol
Questions on random matrices and non-intersecting Brownian motions have led to the study of moment matrices with regard to several weights. The main result of this paper is to show that the determinants of such moment matrices satisfy, upon adding one set of "time" deformations for each weight, the multi-component KP-hierarchy: these determinants are thus "tau-functions" for these integrable hierarchies. The tau-functions, so obtained, with appropriate shifts of the time-parameters ( forward and backwards) will be expressed in terms of multiple orthogonal polynomials for these weights and their Cauchy transforms. The main result is a vast generalization of a known fact about infinitesimal deformations of orthogonal polynomials: it concerns an identity between the orthogonality of polynomials on the real line, the bilinear identity in KP theory and a generating functional for the full KP theory. An additional fact not discussed in this paper is that these tau-functions satisfy Virasoro constraints with respect to these time parameters.
As one of the many examples worked out in this paper, we consider N non-intersecting Brownian motions in R leaving from the origin, with n(i) particles forced to reach p distinct target points b(i) at time t = 1; of course, Sigma(p)(i=1) n(i) = N. We give a PDE, in terms of the boundary points of the interval E, for the probability that the Brownian particles all pass through an interval E at time 0 < t < 1. It is given by the determinant of a (p + 1) x (p + 1) matrix, which is nearly a wronskian. This theory is also applied to biorthogonal polynomials and orthogonal polynomials on the circle.
- Ablowitz M. J., Ladik J. F., On the Solution of a Class of Nonlinear Partial Difference Equations, 10.1002/sapm19775711
- Ablowitz M.J., Ladik J.F.: Non-linear differential-difference equations and Fourier analysis. J. Math. Phys. 17, 1011–1018 (1976)
- Adler, M., Delépine, J., van Moerbeke, P., Vanhaecke, P.: Dyson’s non-intersecting Brownian motions with a few outliers. To appear Comm Pure Appl Math, doi: 10.1002/cpa.2064 , available at http://arxiv.org/abs/:math.PR/0707.0442 , 2008, vi[math], 2007
- Adler, M., van Moerbeke, P., Vanhaecke, P.: Non-intersecting Brownian motions from one to many points. To appear, 2008
- Adler M., van Moerbeke P.: Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials. Duke Math. J. 80, 863–911 (1995)
- Adler M., van Moerbeke P.: String-orthogonal polynomials, string equations and 2-Toda symmetries. Comm. Pure & Appl. Math. 50, 241–290 (1997)
- Adler M., van Moerbeke P.: Generalized orthogonal polynomials, discrete KP and Riemann-Hilbert problems. Commun. Math. Phys. 207, 589–620 (1999)
- Adler M., van Moerbeke P.: Integrals over classical groups, random permutations Toda and Toeplitz lattices. Comm. Pure Appl. Math. 54(2), 153–205 (2001)
- Adler M., Moerbeke P. van, Recursion Relations for Unitary Integrals, Combinatorics and the Toeplitz Lattice, 10.1007/s00220-003-0818-4
- Adler M., van Moerbeke P.: PDEs for the joint distributions of the Dyson, Airy and sine processes. Ann. Probab. 33(4), 1326–1361 (2005)
- Adler M., van Moerbeke P.: PDE’s for the Gaussian ensemble with external source and the Pearcey distribution. Comm. Pure and Appl. Math. 60, 1–32 (2007)
- Aptekarev A.: Multiple orthogonal polynomials. J. Comp. Appl. Math. 99, 423–447 (1998)
- Aptekarev A., Bleher P., Kuijlaars A.: Large n limit of Gaussian random matrices with external source. II. Commun. Math. Phys. 259, 367–389 (2005)
- Aptekarev A., Branquinho A., Van Assche W.: Multiple orthogonal polynomials for classical weights. Trans. Amer. Math. Soc. 355, 3887–3914 (2003)
- Bergvelt Maarten, ten Kroode A., Partitions, vertex operator constructions and multi-component KP equations, 10.2140/pjm.1995.171.23
- Bessis D., Itzykson Cl., Zuber J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1, 109–157 (1980)
- Bleher P., Kuijlaars A.: Random matrices with external source and multiple orthogonal polynomials. Int. Math. Res. Not. 3, 109–129 (2004)
- Bleher P., Kuijlaars A.: Large n limit of Gaussian random matrices with external source, Part I. Commun. Math. Phys. 252, 43–76 (2004)
- Bleher P., Kuijlaars A.: Random matrices with external source and multiple orthogonal polynomials. Int. Math. Res. Not. 3, 109–129 (2004)
- Daems E., Kuijlaars A.B.J.: Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions. J. Approx. Theory 146, 91–114 (2007)
- Date, E., Jimbo, M., Kashiwara, M., Miwa T.: Transformation groups for soliton equations, In: Proc. RIMS Symp. Nonlinear integrable systems—Classical and quantum theory (Kyoto 1981), Singapore: World Scientific, 1983, pp. 39–119
- Deift P., Zhou X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Ann. of Math. 137, 295–368 (1993)
- Dickey L A, Soliton Equations and Hamiltonian Systems, ISBN:9789810202156, 10.1142/1109
- Fokas A.S., Its A.R., Kitaev A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147(2), 395–430 (1992)
- Gerasimov A., Marshakov A., Mironov A., Morozov A., Orlov A.: Matrix models of two-dimensional gravity and Toda theory. Nucl. Phys. B 357, 565–618 (1991)
- Geronimo J.S., Case K.M.: Scattering theory and polynomials orthogonal on the real line. Trans. Amer. Math. Soc. 258, 467–494 (1980)
- HISAKADO MASATO, UNITARY MATRIX MODELS AND PAINLEVÉ III, 10.1142/s0217732396002976
- Johansson K.: Universality of the Local Spacing distribution in certain ensembles of Hermitian Wigner Matrices. Commun. Math. Phys. 215, 683–705 (2001)
- Kac V.G., van de Leur J.W.: The n-component KP hierarchy and representation theory, Integrability, topological solitons and beyond. J. Math. Phys. 44, 3245–3293 (2003)
- Karlin Samuel, McGregor James, Coincidence probabilities, 10.2140/pjm.1959.9.1141
- Moser, J.: Finitely many mass points on the line under the influence of an exponential potential–an integrable system. In: Dynamical systems, theory and applications (Rencontres, BattelleRes. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., vol. 38, Berlin: Springer, 1975, pp. 467–497
- Okounkov A., Reshetikhin N.: Random skew plane partitions and the Pearcey process. Commun. Math. Phys. 269(3), 571–609 (2007)
- Szegö, G.: Orthogonal polynomials. Fourth edition, American Mathematical Society, Colloquium Publications, vol. XXIII. Providence, RI: Amer. Math. Soc., 1975, xiii + 432 pp.
- Tracy C.A., Widom H.: Differential equations for Dyson processes. Commun. Math. Phys. 252, 7–41 (2004)
- Tracy C.A., Widom H.: The Pearcey Process. Commun. Math. Phys. 263(2), 381–400 (2006)
- Ueno, K., Takasaki, K.: Toda lattice hierarchy. In Group representations and systems of differential equations (Tokyo, 1982), vol. 4 of Adv. Stud. Pure Math., Amsterdam: North-Holland, 1984, pp. 1–95
- Van Assche W., Coussement E.: Some classical multiple orthogonal polynomials. J. Comp. Appl. Math. 127, 317–347 (2001)
- Van Assche, W., Geronimo, J.S., Kuijlaars, A.: Riemann-Hilbert problems for multiple orthogonal polynomials. In: Special functions 2000: Current Perspectives and Future directions, Bustoz J. et al., eds., Dordrecht: Kluwer, 2001, pp. 23–59
- Wiegmann P.B., Zabrodin A.: Conformal maps and integrable hierarchies. Commun. Math. Phys. 213, 523–538 (2000)
Bibliographic reference |
Adler, Mark ; Van Moerbeke, Pierre ; Vanhaecke, Pol. Moment Matrices and Multi-Component KP, with Applications to Random Matrix Theory. In: Communications in Mathematical Physics, Vol. 286, no. 1, p. 1-38 (2009) |
Permanent URL |
http://hdl.handle.net/2078.1/35892 |