User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Moment Matrices and Multi-Component KP, with Applications to Random Matrix Theory

  1. Ablowitz M. J., Ladik J. F., On the Solution of a Class of Nonlinear Partial Difference Equations, 10.1002/sapm19775711
  2. Ablowitz M.J., Ladik J.F.: Non-linear differential-difference equations and Fourier analysis. J. Math. Phys. 17, 1011–1018 (1976)
  3. Adler, M., Delépine, J., van Moerbeke, P., Vanhaecke, P.: Dyson’s non-intersecting Brownian motions with a few outliers. To appear Comm Pure Appl Math, doi: 10.1002/cpa.2064 , available at http://arxiv.org/abs/:math.PR/0707.0442 , 2008, vi[math], 2007
  4. Adler, M., van Moerbeke, P., Vanhaecke, P.: Non-intersecting Brownian motions from one to many points. To appear, 2008
  5. Adler M., van Moerbeke P.: Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials. Duke Math. J. 80, 863–911 (1995)
  6. Adler M., van Moerbeke P.: String-orthogonal polynomials, string equations and 2-Toda symmetries. Comm. Pure & Appl. Math. 50, 241–290 (1997)
  7. Adler M., van Moerbeke P.: Generalized orthogonal polynomials, discrete KP and Riemann-Hilbert problems. Commun. Math. Phys. 207, 589–620 (1999)
  8. Adler M., van Moerbeke P.: Integrals over classical groups, random permutations Toda and Toeplitz lattices. Comm. Pure Appl. Math. 54(2), 153–205 (2001)
  9. Adler M., Moerbeke P. van, Recursion Relations for Unitary Integrals, Combinatorics and the Toeplitz Lattice, 10.1007/s00220-003-0818-4
  10. Adler M., van Moerbeke P.: PDEs for the joint distributions of the Dyson, Airy and sine processes. Ann. Probab. 33(4), 1326–1361 (2005)
  11. Adler M., van Moerbeke P.: PDE’s for the Gaussian ensemble with external source and the Pearcey distribution. Comm. Pure and Appl. Math. 60, 1–32 (2007)
  12. Aptekarev A.: Multiple orthogonal polynomials. J. Comp. Appl. Math. 99, 423–447 (1998)
  13. Aptekarev A., Bleher P., Kuijlaars A.: Large n limit of Gaussian random matrices with external source. II. Commun. Math. Phys. 259, 367–389 (2005)
  14. Aptekarev A., Branquinho A., Van Assche W.: Multiple orthogonal polynomials for classical weights. Trans. Amer. Math. Soc. 355, 3887–3914 (2003)
  15. Bergvelt Maarten, ten Kroode A., Partitions, vertex operator constructions and multi-component KP equations, 10.2140/pjm.1995.171.23
  16. Bessis D., Itzykson Cl., Zuber J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1, 109–157 (1980)
  17. Bleher P., Kuijlaars A.: Random matrices with external source and multiple orthogonal polynomials. Int. Math. Res. Not. 3, 109–129 (2004)
  18. Bleher P., Kuijlaars A.: Large n limit of Gaussian random matrices with external source, Part I. Commun. Math. Phys. 252, 43–76 (2004)
  19. Bleher P., Kuijlaars A.: Random matrices with external source and multiple orthogonal polynomials. Int. Math. Res. Not. 3, 109–129 (2004)
  20. Daems E., Kuijlaars A.B.J.: Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions. J. Approx. Theory 146, 91–114 (2007)
  21. Date, E., Jimbo, M., Kashiwara, M., Miwa T.: Transformation groups for soliton equations, In: Proc. RIMS Symp. Nonlinear integrable systems—Classical and quantum theory (Kyoto 1981), Singapore: World Scientific, 1983, pp. 39–119
  22. Deift P., Zhou X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Ann. of Math. 137, 295–368 (1993)
  23. Dickey L A, Soliton Equations and Hamiltonian Systems, ISBN:9789810202156, 10.1142/1109
  24. Fokas A.S., Its A.R., Kitaev A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147(2), 395–430 (1992)
  25. Gerasimov A., Marshakov A., Mironov A., Morozov A., Orlov A.: Matrix models of two-dimensional gravity and Toda theory. Nucl. Phys. B 357, 565–618 (1991)
  26. Geronimo J.S., Case K.M.: Scattering theory and polynomials orthogonal on the real line. Trans. Amer. Math. Soc. 258, 467–494 (1980)
  27. HISAKADO MASATO, UNITARY MATRIX MODELS AND PAINLEVÉ III, 10.1142/s0217732396002976
  28. Johansson K.: Universality of the Local Spacing distribution in certain ensembles of Hermitian Wigner Matrices. Commun. Math. Phys. 215, 683–705 (2001)
  29. Kac V.G., van de Leur J.W.: The n-component KP hierarchy and representation theory, Integrability, topological solitons and beyond. J. Math. Phys. 44, 3245–3293 (2003)
  30. Karlin Samuel, McGregor James, Coincidence probabilities, 10.2140/pjm.1959.9.1141
  31. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential–an integrable system. In: Dynamical systems, theory and applications (Rencontres, BattelleRes. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., vol. 38, Berlin: Springer, 1975, pp. 467–497
  32. Okounkov A., Reshetikhin N.: Random skew plane partitions and the Pearcey process. Commun. Math. Phys. 269(3), 571–609 (2007)
  33. Szegö, G.: Orthogonal polynomials. Fourth edition, American Mathematical Society, Colloquium Publications, vol. XXIII. Providence, RI: Amer. Math. Soc., 1975, xiii + 432 pp.
  34. Tracy C.A., Widom H.: Differential equations for Dyson processes. Commun. Math. Phys. 252, 7–41 (2004)
  35. Tracy C.A., Widom H.: The Pearcey Process. Commun. Math. Phys. 263(2), 381–400 (2006)
  36. Ueno, K., Takasaki, K.: Toda lattice hierarchy. In Group representations and systems of differential equations (Tokyo, 1982), vol. 4 of Adv. Stud. Pure Math., Amsterdam: North-Holland, 1984, pp. 1–95
  37. Van Assche W., Coussement E.: Some classical multiple orthogonal polynomials. J. Comp. Appl. Math. 127, 317–347 (2001)
  38. Van Assche, W., Geronimo, J.S., Kuijlaars, A.: Riemann-Hilbert problems for multiple orthogonal polynomials. In: Special functions 2000: Current Perspectives and Future directions, Bustoz J. et al., eds., Dordrecht: Kluwer, 2001, pp. 23–59
  39. Wiegmann P.B., Zabrodin A.: Conformal maps and integrable hierarchies. Commun. Math. Phys. 213, 523–538 (2000)
Bibliographic reference Adler, Mark ; Van Moerbeke, Pierre ; Vanhaecke, Pol. Moment Matrices and Multi-Component KP, with Applications to Random Matrix Theory. In: Communications in Mathematical Physics, Vol. 286, no. 1, p. 1-38 (2009)
Permanent URL http://hdl.handle.net/2078.1/35892