User menu

An exact sequence for contact- and symplectic homology

Bibliographic reference Bourgeois, Frederic ; Oancea, Alexandru. An exact sequence for contact- and symplectic homology. In: Inventiones Mathematicae, Vol. 175, no. 3, p. 611-680 (2009)
Permanent URL
  1. Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles. Commun. Pure Appl. Math. 59, 254–316 (2006)
  2. Biran, P.: Lagrangian barriers and symplectic embeddings. Geom. Funct. Anal. 11, 407–464 (2001)
  3. Bourgeois, F.: A Morse–Bott approach to contact homology. Ph.D. thesis, Stanford University (2002)
  4. Bourgeois, F., Ekholm, T., Eliashberg, Y.: A Legendrian surgery long exact sequence for linearized contact homology. Work in progress
  5. Bourgeois, F., Eliashberg, Y., Hofer, H., Wysocki, K., Zehnder, E.: Compactness results in symplectic field theory. Geom. Topol. 7, 799–888 (2003)
  6. Bourgeois Fr�d�ric, Mohnke Klaus, Coherent orientations in symplectic field theory, 10.1007/s00209-004-0656-x
  7. Bourgeois, F., Oancea, A.: Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces. Duke Math. J. (to appear). arXiv:0704.1039
  8. Bourgeois, F., Oancea, A.: The Gysin exact sequence for S 1-equivariant symplectic homology. Work in progress
  9. Cieliebak, K.: Handle attaching in symplectic homology and the chord conjecture. J. Eur. Math. Soc. (JEMS) 4, 115–142 (2002)
  10. Cieliebak, K.: Subcritical Stein manifolds are split. arXiv:math/0204351
  11. Cieliebak, K., Floer, A., Hofer, H., Wysocki, K.: Applications of symplectic homology II: Stability of the action spectrum. Math. Z. 223, 27–45 (1996)
  12. Cieliebak, K., Latschev, J.: The role of string topology in symplectic field theory. arXiv:0706.3284
  13. Cieliebak Kai, Mohnke Klaus, Symplectic hypersurfaces and transversality in Gromov-Witten theory, 10.4310/jsg.2007.v5.n3.a2
  14. Cieliebak, K., Oancea, A.: Non-equivariant contact homology. Work in progress
  15. Dragnev, D.: Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Commun. Pure Appl. Math. 57, 726–763 (2004)
  16. Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal., Special Volume, Part II, 560–673 (2000)
  17. Floer, A., Hofer, H.: Symplectic homology. I. Open sets in ℂ n . Math. Z. 215, 37–88 (1994)
  18. Hofer, H.: Polyfolds and a general Fredholm theory. arXiv:0809.3753
  19. Hofer Helmut, Salamon Dietmar A., Floer homology and Novikov rings, The Floer Memorial Volume (1995) ISBN:9783034899482 p.483-524, 10.1007/978-3-0348-9217-9_20
  20. Hofer, H., Wysocki, K., Zehnder, E.: Properties of pseudoholomorphic curves in symplectizations. I. Asymptotics. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13, 337–379 (1996)
  21. Hofer, H., Wysocki, K., Zehnder, E.: A general Fredholm theory II: implicit function theorems. Geom. Funct. Anal. (to appear). arXiv:0705.1310
  22. McCleary, J.: A User’s Guide to Spectral Sequences, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 58. Cambridge University Press, Cambridge (2001)
  23. McDuff Dusa, Salamon Dietmar, 𝐽-holomorphic Curves and Symplectic Topology, ISBN:9780821834855, 10.1090/coll/052
  24. Oancea, A.: A survey of Floer homology for manifolds with contact type boundary or symplectic homology. Ens. Mat. 7, 51–91 (2004)
  25. Oancea, A.: The Künneth formula in Floer homology for manifolds with restricted contact type boundary. Math. Ann. 334, 65–89 (2006)
  26. Oancea Alexandru, Fibered symplectic cohomology and the Leray-Serre spectral sequence, 10.4310/jsg.2008.v6.n3.a3
  27. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32, 827–844 (1993)
  28. Salamon, D., Weber, J.: Floer homology and the heat flow. Geom. Funct. Anal. 16, 1050–1138 (2006)
  29. Salamon, D., Zehnder, E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun. Pure Appl. Math. 45, 1303–1360 (1992)
  30. Schwarz, M.: Cohomology operations from S 1-cobordisms in Floer homology. Ph.D. thesis, ETH Zurich (1995)
  31. Seidel, P.: Symplectic homology as Hochschild homology. arXiv:math.SG/0609037
  32. Viterbo, C.: Functors and computations in Floer homology with applications. I. Geom. Funct. Anal. 9, 985–1033 (1999)
  33. Viterbo, C.: Functors and computations in Floer homology with applications. II. Preprint Université Paris-Sud, no. 98-15 (1998)
  34. Yau, M.-L.: Cylindrical contact homology of subcritical Stein-fillable contact manifolds. Geom. Topol. 8, 1243–1280 (2004)