User menu

A functional of the one-body-reduced density matrix derived from the homogeneous electron gas: Performance for finite systems

Bibliographic reference Lathiotakis, N. N. ; Helbig, N. ; Zacarias, A. ; Gross, E. K. U.. A functional of the one-body-reduced density matrix derived from the homogeneous electron gas: Performance for finite systems. In: Journal of Chemical Physics, Vol. 130, no. 6 (2009)
Permanent URL
  1. BUIJSE M. A., BAERENDS E. J., An approximate exchange-correlation hole density as a functional of the natural orbitals, 10.1080/00268970110070243
  2. Gritsenko Oleg, Pernal Katarzyna, Baerends Evert Jan, An improved density matrix functional by physically motivated repulsive corrections, 10.1063/1.1906203
  3. Sharma S., Dewhurst J. K., Lathiotakis N. N., Gross E. K. U., Reduced density matrix functional for many-electron systems, 10.1103/physrevb.78.201103
  4. Gilbert T. L., Hohenberg-Kohn theorem for nonlocal external potentials, 10.1103/physrevb.12.2111
  5. Müller A.M.K., Explicit approximate relation between reduced two- and one-particle density matrices, 10.1016/0375-9601(84)91034-x
  6. Goedecker S., Umrigar C. J., Natural Orbital Functional for the Many-Electron Problem, 10.1103/physrevlett.81.866
  7. Csányi Gábor, Goedecker Stefan, Arias T. A., Improved tensor-product expansions for the two-particle density matrix, 10.1103/physreva.65.032510
  8. Yasuda Koji, Local Approximation of the Correlation Energy Functional in the Density Matrix Functional Theory, 10.1103/physrevlett.88.053001
  9. Kollmar Christian, The “JK-only” approximation in density matrix functional and wave function theory, 10.1063/1.1819319
  10. Cioslowski Jerzy, Pernal Katarzyna, Buchowiecki Marcin, Approximate one-matrix functionals for the electron–electron repulsion energy from geminal theories, 10.1063/1.1604375
  11. Pernal Katarzyna, Cioslowski Jerzy, Phase dilemma in density matrix functional theory, 10.1063/1.1651059
  12. Lathiotakis N. N., Helbig N., Gross E. K. U., Open shells in reduced-density-matrix-functional theory, 10.1103/physreva.72.030501
  13. Cioslowski Jerzy, Pernal Katarzyna, Local-density-matrix approximation: Exact asymptotic results for a high-density homogeneous electron gas, 10.1103/physrevb.71.113103
  14. Piris Mario, A new approach for the two-electron cumulant in natural orbital functional theory, 10.1002/qua.20858
  15. Kollmar Christian, A size extensive energy functional derived from a double configuration interaction approach: The role of N representability conditions, 10.1063/1.2336210
  16. Marques Miguel A. L., Lathiotakis N. N., Empirical functionals for reduced-density-matrix-functional theory, 10.1103/physreva.77.032509
  17. Piris M., Lopez X., Ugalde J. M., Dispersion interactions within the Piris natural orbital functional theory: The helium dimer, 10.1063/1.2743019
  18. Leiva P., Piris M., Assessment of a new approach for the two-electron cumulant in natural-orbital-functional theory, 10.1063/1.2135289
  19. Pernal Katarzyna, Cioslowski Jerzy, Ionization potentials from the extended Koopmans’ theorem applied to density matrix functional theory, 10.1016/j.cplett.2005.06.103
  20. Leiva Pavel, Piris Mario, Calculation of vertical ionization potentials with the Piris natural orbital functional, 10.1016/j.theochem.2006.05.001
  21. Leiva P., Piris M., Description of high-spin restricted open-shell molecules with the Piris natural orbital functional, 10.1002/qua.21058
  22. Helbig N, Lathiotakis N. N, Albrecht M, Gross E. K. U, Discontinuity of the chemical potential in reduced-density-matrix-functional theory, 10.1209/0295-5075/77/67003
  23. Staroverov Viktor N., Scuseria Gustavo E., Assessment of simple exchange-correlation energy functionals of the one-particle density matrix, 10.1063/1.1491395
  24. Herbert John M, Harriman John E, Self-interaction in natural orbital functional theory, 10.1016/j.cplett.2003.10.057
  25. Lathiotakis N. N., Marques Miguel A. L., Benchmark calculations for reduced density-matrix functional theory, 10.1063/1.2899328
  26. Cioslowski Jerzy, Pernal Katarzyna, Constraints upon natural spin orbital functionals imposed by properties of a homogeneous electron gas, 10.1063/1.479623
  27. Csányi Gábor, Arias T. A., Tensor product expansions for correlation in quantum many-body systems, 10.1103/physrevb.61.7348
  28. Lathiotakis N. N., Helbig N., Gross E. K. U., Performance of one-body reduced density-matrix functionals for the homogeneous electron gas, 10.1103/physrevb.75.195120
  29. Ceperley D. M., Alder B. J., Ground State of the Electron Gas by a Stochastic Method, 10.1103/physrevlett.45.566
  30. Ortiz G., Ballone P., Erratum: Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas [Phys. Rev. B50, 1391 (1994)], 10.1103/physrevb.56.9970
  31. Schmidt Michael W., Baldridge Kim K., Boatz Jerry A., Elbert Steven T., Gordon Mark S., Jensen Jan H., Koseki Shiro, Matsunaga Nikita, Nguyen Kiet A., Su Shujun, Windus Theresa L., Dupuis Michel, Montgomery John A., General atomic and molecular electronic structure system, 10.1002/jcc.540141112
  32. Dunning Thom H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, 10.1063/1.456153
  33. Woon David E., Dunning Thom H., Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties, 10.1063/1.466439
  34. Pople John A., Head‐Gordon Martin, Raghavachari Krishnan, Quadratic configuration interaction. A general technique for determining electron correlation energies, 10.1063/1.453520
  35. Grüning M., Gritsenko O. V., Baerends E. J., Exchange-correlation energy and potential as approximate functionals of occupied and virtual Kohn–Sham orbitals: Application to dissociating H[sub 2], 10.1063/1.1562197
  36. Baerends E. J., Exact Exchange-Correlation Treatment of DissociatedH2in Density Functional Theory, 10.1103/physrevlett.87.133004