User menu

Simplicity and superrigidity of twin building lattices

Bibliographic reference Caprace, Pierre-Emmanuel ; Remy, Bertrand. Simplicity and superrigidity of twin building lattices. In: Inventiones Mathematicae, Vol. 176, no. 1, p. 169-221 (2009)
Permanent URL
  1. Abramenko Peter, Twin Buildings and Applications to S-Arithmetic Groups, ISBN:9783540619734, 10.1007/bfb0094079
  2. Abramenko Peter, Brown Kenneth S., Buildings, ISBN:9780387788340, 10.1007/978-0-387-78835-7
  3. Abramenko Peter, Mühlherr Bernhard, Présentations de certaines BN-paires jumelées comme sommes amalgamées, 10.1016/s0764-4442(97)80044-4
  4. Adams, S., Ballmann, W.: Amenable isometry groups of Hadamard spaces. Math. Ann. 312, 183–195 (1998)
  5. Bader, U., Shalom, Y.: Factor and normal subgroup theorems for lattices in products of groups. Invent. Math. 163, 415–454 (2006)
  6. Baumgartner, U., Rémy, B., Willis, G.: Flat rank of automorphism groups of buildings. Transform. Groups 12, 413–436 (2007)
  7. Billig, Y., Pianzola, A.: Root strings with two consecutive real roots. Tohoku Math. J., II. Ser. 47, 391–403 (1995)
  8. Boone, W.W., Higman, G.: An algebraic characterization of groups with soluble word problem. J. Aust. Math. Soc. 18, 41–53 (1974) (Collection of articles dedicated to the memory of Hanna Neumann, IX)
  9. Bourbaki, N.: Topologie générale I–IV. Hermann, Paris (1971)
  10. Bourbaki, N.: Groupes et algèbres de Lie II et III. Hermann, Paris (1972)
  11. Bourbaki, N.: Groupes et algèbres de Lie IV–VI. Masson, Paris (1981)
  12. Bourdon, M., Martin, F., Valette, A.: Vanishing and non-vanishing for the first L p -cohomology of groups. Comment. Math. Helv. 80(2), 377–389 (2005)
  13. Bridson Martin R., Haefliger André, Metric Spaces of Non-Positive Curvature, ISBN:9783642083990, 10.1007/978-3-662-12494-9
  14. Brink, B.B., Howlett, R.B.: A finiteness property and an automatic structure for Coxeter groups. Math. Ann. 296, 179–190 (1993)
  15. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. I. Donnée radicielles valuées. Publ. Math., Inst. Hautes Étud. Sci. 41, 5–252 (1972)
  16. Burger, M., Mozes, S.: CAT(-1)-spaces, divergence groups and their commensurators. J. Am. Math. Soc. 9, 57–93 (1996)
  17. Burger Marc, Mozes Shahar, Groups acting on trees: From local to global structure, 10.1007/bf02698915
  18. Burger Marc, Mozes Shahar, Lattices in product of trees, 10.1007/bf02698916
  19. Caprace, P.-E.: Amenable groups and Hadamard spaces with a totally disconnected isometry group. Comment. Math. Helv. (to appear)
  20. Caprace, P.-E.: “Abstract” homomorphisms of split Kac–Moody groups. Ph.D. thesis, Université Libre de Bruxelles (December 2005)
  21. Caprace, P.-E., Haglund, F.: On geometric flats in the CAT(0) realization of Coxeter groups and Tits buildings. Can. J. Math. (to appear)
  22. Caprace, P.-E., Monod, N.: Isometry groups and lattices of non-positively curved spaces. Preprint, available at arXiv:0809.0457
  23. Caprace, P.-E., Mühlherr, B.: Isomorphisms of Kac–Moody groups which preserve bounded subgroups. Adv. Math. 206(1), 250–278 (2006)
  24. Caprace Pierre-Emmanuel, Rémy Bertrand, Simplicité abstraite des groupes de Kac–Moody non affines, 10.1016/j.crma.2006.02.029
  25. Caprace, P.-E., Rémy, B.: Groups with a root group datum. Survey (2008), submitted
  26. Carbone, L., Ershov, M., Ritter, G.: Abstract simplicity of complete Kac–Moody groups over finite fields. J. Pure Appl. Algebra 212(10), 2147–2162 (2008)
  27. Carbone Lisa, Garland Howard, Lattices in Kac-Moody groups, 10.4310/mrl.1999.v6.n4.a6
  28. Davis, M.W.: Buildings are CAT(0). In: Geometry and Cohomology in Group Theory, Lond. Math. Soc. Lect. Note Ser., pp. 108–123. Cambridge Univ. Press, Cambridge (1998)
  29. Delzant, T.: Sous-groupes distingués et quotients des groupes hyperboliques. Duke Math. J. 83, 661–682 (1996)
  30. Dymara, J., Januszkiewicz, T.: Cohomology of buildings and their automorphism groups. Invent. Math. 150, 579–627 (2002)
  31. Gelander, T., Karlsson, A., Margulis, G.A.: Superrigidity, generalized harmonic maps and uniformly convex spaces. Geom. Funct. Anal. 17(5), 1524–1550 (2008)
  32. Greenleaf, F.: Invariant Means on Topological Groups and Their Applications. Van Nostrand Mathematical Studies, vol. 16. Van Nostrand Reinhold Co., New York (1969)
  33. Gromov M., Hyperbolic Groups, Essays in Group Theory (1987) ISBN:9781461395881 p.75-263, 10.1007/978-1-4613-9586-7_3
  34. Hall Jr., M.: The Theory of Groups. Chelsea Publishing Co., New York (1976) (Reprinting of the 1968 edition)
  35. De la Harpe, P., Robertson, A.G., Valette, A.: On exactness of group C *-algebras. Q. J. Math., Oxf. II. Ser. 45(180), 499–513 (1994)
  36. De la Harpe, P., Valette, A.: La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque, vol. 175 (1989) (With an appendix by M. Burger)
  37. Hée, J.-Y.: Sur la torsion de Steinberg–Ree des groupes de Chevalley et des groupes de Kac–Moody. Thèse d’État de l’Université Paris 11 Orsay (1993)
  38. Hewitt, E., Ross, K.: Abstract Harmonic Analysis. Vol. II: Structure and Analysis for compact groups. Analysis on locally compact Abelian groups. Grundlehren Math. Wiss., vol. 152. Springer, New York (1970)
  39. Kac Victor G., Infinite dimensional Lie algebras, ISBN:9780511626234, 10.1017/cbo9780511626234
  40. Kac Victor G., Peterson Dale H., Regular Functions on Certain Infinite-dimensional Groups, Arithmetic and Geometry (1983) ISBN:9780817631338 p.141-166, 10.1007/978-1-4757-9286-7_8
  41. Kac, V.G., Peterson, D.H.: Defining relations for certain infinite-dimensional groups. In: Élie Cartan et les mathématiques d’aujourd’hui, Astérisque, pp. 165–208. Soc. Math. France (1985)
  42. Krammer, D.: The conjugacy problem for Coxeter groups. Ph.D. thesis, Universiteit Utrecht (1994). Available at∼daan/index_files/Proefschrift12.dvi
  43. Kumar Shrawan, Kac-Moody Groups, their Flag Varieties and Representation Theory, ISBN:9781461266143, 10.1007/978-1-4612-0105-2
  44. Lubotzky Alexander, Segal Dan, Subgroup Growth, ISBN:9783034898461, 10.1007/978-3-0348-8965-0
  45. Margulis Gregori Aleksandrovitch, Discrete Subgroups of Semisimple Lie Groups, ISBN:9783642057212, 10.1007/978-3-642-51445-6
  46. Margulis, G.A., Vinberg, È.B.: Some linear groups virtually having a free quotient. J. Lie Theory 10, 171–180 (2000)
  47. Maskit, B.: Kleinian Groups. Grundlehren Math. Wiss., vol. 287. Springer, Berlin (1988)
  48. Mineyev, I., Monod, N., Shalom, Y.: Ideal bicombings for hyperbolic groups and applications. Topology 43(6), 1319–1344 (2004)
  49. Monod, N.: Arithmeticity vs. nonlinearity for irreducible lattices. Geom. Dedicata 112, 225–237 (2005)
  50. Monod, N.: Superrigidity for irreducible lattices and geometric splitting. J. Am. Math. Soc. 19, 781–814 (2006)
  51. Monod, N., Shalom, Y.: Cocycle superrigidity and bounded cohomology for negatively curved spaces. J. Differ. Geom. 67, 395–455 (2004)
  52. Montgomery, D., Zippin, L.: Topological Transformation Groups. Robert E. Krieger Publishing Co., Huntington (1974)
  53. Moody, R.V., Pianzola, A.: Lie Algebras with Triangular Decompositions. Can. Math. Soc. Ser. Monogr. Adv. Texts. Wiley Interscience, New York (1995)
  54. Morita, J.: Commutator relations in Kac–Moody groups. Proc. Japan Acad., Ser. A Math. Sci. 63, 21–22 (1987)
  55. Mühlherr, B.: Locally split and locally finite twin buildings of 2-spherical type. J. Reine Angew. Math. 511, 119–143 (1999)
  56. Mühlherr Bernhard, Twin buildings, Tits Buildings and the Model Theory of Groups ISBN:9780511549786 p.103-118, 10.1017/cbo9780511549786.005
  57. Mühlherr, B., Ronan, M.: Local to global structure in twin buildings. Invent. Math. 122, 71–81 (1995)
  58. Noskov, G.A., Vinberg, È.B.: Strong Tits alternative for subgroups of Coxeter groups. J. Lie Theory 12, 259–264 (2002)
  59. Olshanskii, A.Y.: SQ-universality of hyperbolic groups. Mat. Sb. 186, 119–132 (1995)
  60. Rémy Bertrand, Construction de réseaux en théorie de Kac-Moody, 10.1016/s0764-4442(00)80044-0
  61. Rémy Bertrand, Classical and Non-Linearity Properties of Kac-Moody Lattices, Rigidity in Dynamics and Geometry (2002) ISBN:9783642077517 p.391-406, 10.1007/978-3-662-04743-9_21
  62. Rémy, B.: Groupes de Kac–Moody déployés et presque déployés. Astérisque, vol. 277 (2002)
  63. R�my Bertrand, Bonvin Patrick, Topological simplicity, commensurator super-rigidity and nonlinearities of Kac-Moody groups (appendix by P. Bonvin), 10.1007/s00039-004-0476-5
  64. Rémy, B.: Integrability of induction cocycles for Kac–Moody groups. Math. Ann. 333, 29–43 (2005)
  65. Rémy, B., Ronan, M.: Topological groups of Kac–Moody type, right-angled twinnings and their lattices. Comment. Math. Helv. 81, 191–219 (2006)
  66. Ronan, M.: Lectures on Buildings. Perspect. Math., vol. 7. Academic Press, Boston (1989)
  67. Shalom, Y.: Rigidity of commensurators and irreducible lattices. Invent. Math. 141, 1–54 (2000)
  68. Steinberg, R.: Lectures on Chevalley Groups. Yale University, New Haven (1968) (Notes prepared by J. Faulkner and R. Wilson)
  69. Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972)
  70. Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. Lect. Notes Math., vol. 386. Springer, Berlin (1974)
  71. Tits, J.: Uniqueness and presentation of Kac–Moody groups over fields. J. Algebra 105, 542–573 (1987)
  72. Tits, J.: Groupes associés aux algèbres de Kac–Moody. Astérisque (177–178), Exp. No. 700, 7–31 (1989). Séminaire Bourbaki, Vol. 1988/89
  73. Tits, J.: Théorie des groupes. Résumés de cours (1988/89). Annuaire du Collège France 89, 81–96 (1990)
  74. Tits, J.: Twin Buildings and Groups of Kac–Moody Type. Lond. Math. Soc. Lect. Notes Ser. (Durham, 2000), pp. 249–286. London Mathematical Society, Cambridge (1992)
  75. Tits, J., Weiss, R.: Moufang Polygons. Springer Monogr. Math. Springer, Berlin (2002)
  76. Wilson, J.S.: Groups with every proper quotient finite. Proc. Camb. Philos. Soc. 69, 373–391 (1971)
  77. Zimmer Robert J., Ergodic Theory and Semisimple Groups, ISBN:9781468494907, 10.1007/978-1-4684-9488-4