User menu

Random Walks in Space Time Mixing Environments

Bibliographic reference Bricmont, Jean ; Kupiainen, Antti. Random Walks in Space Time Mixing Environments. In: Journal of Statistical Physics, Vol. 134, no. 5-6, p. 979-1004 (2009)
Permanent URL
  1. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)
  2. Bricmont, J., Kupiainen, A.: Randoms walks in asymmetric random environments. Commun. Math. Phys. 142, 345–420 (1991)
  3. Bricmont, J., Kupiainen, A.: Coupled analytic maps. Nonlinearity 8, 379–396 (1995)
  4. Bricmont, J., Kupiainen, A.: High-temperature expansions and dynamical systems. Commun. Math. Phys. 178, 703–732 (1996)
  5. Bricmont, J., Kupiainen, A.: Infinite dimensional SRB measures. Physica D 103, 18–33 (1997)
  6. Bricmont, J., Kupiainen, A.: In preparation
  7. Brydges, D.C.: A short course on cluster expansions. In: Osterwalder, K., Stora, R. (eds.) Critical Phenomena, Random Systems, Gauge Theories. Les Houches Session, vol. XLIII, pp. 139–183. North-Holland, Amsterdam (1984)
  8. Bunimovich, L.A., Sinai, Y.G.: Space-time chaos in coupled map lattices. Nonlinearity 1, 491–516 (1988)
  9. Dobrushin R. L., Shlosman S. B., Completely Analytical Gibbs Fields, Statistical Physics and Dynamical Systems (1985) ISBN:9781489966551 p.371-403, 10.1007/978-1-4899-6653-7_21
  10. Dobrushin, R.L., Shlosman, S.: Completely analytical interactions: Constructive description. J. Stat. Phys. 46, 983–1014 (1987)
  11. Dolgopyat, D., Liverani, C.: Random walk in deterministically changing environment. Lat. Am. J. Probab. Math. Stat. 4, 89–116 (2008)
  12. Dolgopyat, D., Liverani, C.: Non-perturbative approach to random walk in Markovian environment. Preprint. arXiv:0806.3236v1
  13. Dolgopyat, D., Keller, G., Liverani, C.: Random walk in Markovian environment. Ann. Probab. 36, 1676–1710 (2008)
  14. van Enter, A.C.D., Fernandez, R., Schonmann, R., Shlosman, S.: Complete analyticity of the 2D Potts model above the critical temperature. Commun. Math. Phys. 189, 373–393 (1997)
  15. Jiang, M., Mazel, A.E.: Uniqueness and exponential decay of correlations for some two-dimensional spin lattice systems. J. Stat. Phys. 82, 797–821 (1996)
  16. Jiang, M., Pesin, Y.B.: Equilibrium measures for coupled map lattices: Existence, uniqueness and finite-dimensional approximations. Commun. Math. Phys. 193, 675–711 (1998)
  17. Keller, G., Liverani, C.: Uniqueness of the SRB measure for piecewise expanding weakly coupled map lattices in any dimension. Commun. Math. Phys. 262, 33–50 (2006)
  18. Miracle-Sole, S.: On the convergence of cluster expansions. Physica A 279, 244–249 (2000). A lecture on cluster expansion; available on mp-arc 00-192 (2000)
  19. Schonmann, R.H., Shlosman, S.: Complete analyticity for 2D Ising completed. Commun. Math. Phys. 170, 453–482 (1995)
  20. Simon, B.: The Statistical Mechanics of Lattice Gases, vol. 1. Princeton Univ. Press, Princeton (1994)
  21. Sinai, Y.G.: The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27, 256–268 (1982)
  22. Sznitman, A.-S.: Topics in random walks in random environment. In: School and Conference on Probability Theory. ICTP Lecture Notes Series, vol. 17, pp. 203–266. World Scientific, Trieste (2004)
  23. Sznitman, A.-S., Zeitouni, O.: An invariance principle for isotropic diffusions in random environments. Invent. Math. 164, 205–224 (2006)
  24. Zeitouni Ofer, Part II: Random Walks in Random Environment, Lecture Notes in Mathematics ISBN:9783540208327 p.189-312, 10.1007/978-3-540-39874-5_2