User menu

Hydrodynamic Limit for a Zero-Range Process in the Sierpinski Gasket

Bibliographic reference Jara, Milton. Hydrodynamic Limit for a Zero-Range Process in the Sierpinski Gasket. In: Communications in Mathematical Physics, Vol. 288, no. 2, p. 773-797 (2009)
Permanent URL
  1. Barlow M.T., Perkins E.A.: Brownian motion on the Sierpiński gasket. Probab. Theory Related Fields 79(4), 543–623 (1988)
  2. Chang C.C., Yau H.-T.: Fluctuations of one-dimensional Ginzburg-Landau models in nonequilibrium. Commun. Math. Phys. 145(2), 209–234 (1992)
  3. Gravner J., Quastel J.: Internal DLA and the Stefan problem. Ann. Probab. 28(4), 1528–1562 (2000)
  4. Guo M.Z., Papanicolaou G.C., Varadhan S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118(1), 31–59 (1988)
  5. Jara, M.D., Landim, C., Sethuraman, S.: Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes. Probab. Theory Relat. Fields, to appear, doi: 10.1007/s00440-008-0178-2 , 2008
  6. Kigami J.: Analysis on fractals, Volume 143 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2001)
  7. Kigami J.: Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure and the Gaussian heat kernel estimate. Math. Ann. 340(4), 781–804 (2008)
  8. Kigami J., Sheldon D.R., Strichartz R.S.: Green’s functions on fractals. Fractals 8(4), 385–402 (2000)
  9. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems, Volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, 1999
  10. Kusuoka S.: Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst. Math. Sci. 25(4), 659–680 (1989)
  11. Yau H.-T.: Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22(1), 63–80 (1991)