Gallou, Adrien
[UCL]
Cranenbrouck, Sylvie
[UCL]
Declerck, Stephan
[UCL]
Biological control of Rhizoctonia solani with Trichoderma harzianum has been demonstrated in several studies. However, none have reported the dynamics of expression of defence response genes. Here we investigated the expression of these genes in potato roots challenged by R. solani in the presence/absence of T. harzianum Rifai MUCL 29707. Analysis of gene expression revealed an induction of PR1 at 168 h post-inoculation (hpi) and PAL at 96 hpi in the plants inoculated with T. harzianum Rifai MUCL 29707, an induction of PR1, PR2 and PAL at 48 hpi in the plants inoculated with R. solani and an induction of Lox at 24 hpi and PR1, PR2, PAL and GST1 at 72 hpi in the plants inoculated with both organisms. These results suggest that in the presence of T. harzianum Rifai MUCL 29707, the expression of Lox and GST1 genes are primed in potato plantlets infected with R. solani at an early stage of infection.
- Alfano, G., Lewis Ivey, M. L., Cakir, C., Bos, J. I. B., Miller, S. A., Madden, L. V., et al. (2007). Systemic Modulation of Gene Expression in Tomato by Trichoderma hamatum 382. Phytopathology, 97, 429–437.
- Banville Gilbert J., Carling Donald E., Otrysko Barbara E., Rhizoctonia Disease on Potato, Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control (1996) ISBN:9789048145973 p.321-330, 10.1007/978-94-017-2901-7_29
- Brewer, M. T., & Larkin, R. P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection, 24, 939–950.
- Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23–39.
- Chet, I., & Inbar, J. (1994). Biological control of fungal pathogens. Applied Biochemistry and Biotechnology, 48, 37–43.
- Dana, M. M., Limón, M. C., Mejías, R., Mach, R. L., Benítez, T., Pintor-Toro, J. A., et al. (2001). Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Current Genetics, 38, 335–342.
- Darzynkiewicz, Z. (1990). Simultaneous analysis of cellular RNA and DNA content (vol. 41, pp. 401–420). San Diego: Academic Press.
- Declerck, S., Strullu, D. G., & Plenchette, C. (1998). Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia, 90, 579–585.
- De Vos, M., Van Oosten, V. R., Van Poecke, R. M. P., Van Pelt, J. A., Pozo, M. J., Mueller, M. J., et al. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions, 18, 923–937.
- Elad, Y., Freeman, S., & Monte, E. (2000). Biocontrol agents: Mode of action and interaction with other means of control. IOBC wprs Bulletin, vol 24. Sevilla, España.
- Gao, L. L., Smith, F. A., & Smith, S. E. (2006). The rmc locus does not affect plant interactions or defence-related gene expression when tomato (Solanum lycopersicum) is infected with the root fungal parasite, Rhizoctonia. Functional Plant Biology, 33, 289–296.
- Grosch, R., Scherwinski, K., Lottmann, J., & Berg, G. (2006). Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycological Research, 110, 1464–1474.
- Hahn, K., & Strittmatter, G. (1994). Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. European Journal of Biochemistry, 226, 619–626.
- Hanson, L. E., & Howell, C. R. (2004). Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology, 94, 171–176.
- Harman, G. E., & Bjorkman, T. (1998). Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In G. E. Harman, & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 229–265). London UK: Taylor & Francis.
- Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Review Microbiology, 2, 43–56.
- Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, 4–10.
- Kato, M., Hayakawa, Y., Hyodo, Y., & Yano, M. (2000). Wound-induced ethylene synthesis and expression and formation of 1-aminocyclopropane-1-carboxylate (ACC) synthase, ACC oxidase, phenylalanine ammonia-lyase and peroxidase in wounded mesocarp tissue of Cucurbita maxima. Japanese Society of Plant Physiologists’, 41, 440–447.
- Marra, R., Ambrosino, P., Carbone, V., Vinale, F., Woo, S. L., Ruocco, M., et al. (2006). Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current Genetics, 50, 307–321.
- McMaugh, S. J., & Lyon, B. R. (2003). Real-time quantitative RT-PCR assay of gene expression in plant roots during fungal pathogenesis. Biotechniques, 34, 982–986.
- Narusaka, Y., Narusaka, M., Horio, T., & Ishii, H. (1999). Comparison of local and systemic induction of acquired disease resistance in cucumber plants treated with benzothiadiazoles or salicylic acid. Japanese Society of Plant Physiologists, 40, 388–395.
- Newman, M. A., Von Roepenack-Lahaye, E., Parr, A., Daniels, M. J., & Dow, J. M. (2002). Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant Journal, 29, 487–495.
- Nicot, N., Hausman, J. F., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56, 2907–2914.
- Pfaffl M. W., A new mathematical model for relative quantification in real-time RT-PCR, 10.1093/nar/29.9.e45
- Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509–515.
- Salzer, P., Bonanomi, A., Beyer, K., Vogeli-Lange, R., Aeschbacher, R. A., Lange, J., et al. (2000). Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Molecular Plant-Microbe Interactions, 13, 763–777.
- Segarra, G., Casanova, E., Bellido, D., Odena, M. A., Oliveira, E., & Trillas, I. (2007). Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics, 7, 3943–3952.
- Shoresh, M., Yedidia, I., & Chet, I. (2005). Involvement of the jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 95, 76–84.
- Sticher, L., Mauch-Mani, B., & Métraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235–270.
- Van Aarle, I. M., Viennois, G., Amenc, L. K., Tatry, M. V., Luu, D. T., & Plassard, C. (2007). Fluorescent in situ RT-PCR to visualise the expression of a phosphate transporter gene from an ectomycorrhizal fungus. Mycorrhiza, 17, 487–494.
- Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.
- Van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., Van Loon, L. C., & Pieterse, C. M. J. (1999). Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molecular Biology, 41, 537–549.
- Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7).
- Vinale, F., Marra, R., Scala, F., Ghisalberti, E. L., Lorito, L., & Sivasithamparam, K. (2006). Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology, 43, 143–148.
- Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40, 1–10.
- Voets, L., Dupré de Boulois, H., Renard, L., Strullu, D. G., & Declerck, S. (2005). Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiology Letters, 248, 111–118.
- Wilson, P. S., Ketola, E. O., Ahvenniemi, P. M., Lehtonen, M. J., & Valkonen, J. P. T. (2008). Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. Plant Pathology, 57, 152–161.
- Yan, H. Z., & Liou, R. F. (2006). Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genetics and Biology, 43, 430–438.
- Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant Induction of Systemic Resistance to Pseudomonas syringae pv. lachrymans in Cucumber by Trichoderma asperellum (T-203) and Accumulation of Phytoalexins. Applied and Environmental Microbiology, 69, 7343–735.
Bibliographic reference |
Gallou, Adrien ; Cranenbrouck, Sylvie ; Declerck, Stephan. Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. In: European Journal of Plant Pathology, Vol. 124, no. 2, p. 219-230 (2009) |
Permanent URL |
http://hdl.handle.net/2078.1/35608 |