User menu

The Deformation Quantizations of the Hyperbolic Plane

Bibliographic reference Bieliavsky, Pierre ; Detournay, S. ; Spindel, Ph.. The Deformation Quantizations of the Hyperbolic Plane. In: Communications in Mathematical Physics, Vol. 289, no. 2, p. 529-559 (2009)
Permanent URL
  1. Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization I and II. Ann. Phys. 111, 61–151 (1978)
  2. De Wilde M., Lecomte P.: Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7(6), 487–496 (1983)
  3. Fedosov, B.V.: Formal quantization. In: Some problems in modern mathematics and their applications to problems in mathematical physics (Russian), Moscow: Moskov. Fiz.-Tekhn. Inst., 1985., pp. 129–136
  4. Omori H., Maeda Y., Yoshioka A.: Weyl manifolds and deformation quantization. Adv. Math. 85(2), 224–255 (1991)
  5. Bertelson M., Cahen M., Gutt S.: Equivalence of star products. Geometry and physics. Classical Quantum Gravity 14(1A), A93–A107 (1997)
  6. Nest R., Tsygan R.: Algebraic index theorem. Commun. Math. Phys. 172, 223–262 (1995)
  7. Hansen F.: Quantum mechanics in phase space. Rep. Math. Phys. 19(3), 361–381 (1984)
  8. Bertelson M., Bieliavsky P., Gutt S.: Parametrizing equivalence classes of invariant star products. Lett. Math. Phys. 46(4), 339–345 (1998)
  9. Seiberg N., Witten E.: String theory and noncommutative geometry. JHEP 09, 032 (1999)
  10. Connes A., Douglas M.R., Schwarz A.S.: Noncommutative geometry and matrix theory: Compactification on tori. JHEP 9802, 003 (1998)
  11. Schomerus V.: D-branes and deformation quantization. JHEP 9906, 030 (1999)
  12. Alekseev A.Y., Recknagel A., Schomerus V.: Brane dynamics in background fluxes and non-commutative geometry. JHEP 0005, 010 (2000)
  13. Alekseev A.Y., Recknagel A., Schomerus V.: Open strings and non-commutative geometry of branes on group manifolds. Mod. Phys. Lett. A16, 325–336 (2001)
  14. Alekseev A.Y., Recknagel A., Schomerus V.: ‘Non-commutative world-volume geometries: Branes on SU(2) and fuzzy spheres. JHEP 9909, 023 (1999)
  15. Schomerus V.: Lectures on branes in curved backgrounds. Class. Quant. Grav. 19, 5781–5847 (2002)
  16. Bieliavsky P., Jego C., Troost J.: Nucl. Phys. B782, 94–133 (2007)
  17. Hashimoto A., Thomas K.: Non-commutative gauge theory on d-branes in Melvin universes. JHEP 0601, 083 (2006)
  18. Hashimoto A., Sethi S.: Holography and string dynamics in time-dependent backgrounds. Phys. Rev. Lett. 89, 261601 (2002)
  19. Halliday S., Szabo R.J.: Noncommutative field theory on homogeneous gravitational waves. J. Phys. A39, 5189–5226 (2006)
  20. Behr W., Sykora A.: Construction of gauge theories on curved noncommutative spacetime. Nucl. Phys. B 698, 473–502 (2004)
  21. Cai Rong-Gen, Lu Jian-Xin, Ohta Nobuyoshi, NCOS and D-branes in time-dependent backgrounds, 10.1016/s0370-2693(02)03023-x
  22. Cai R.-G., Ohta N.: Holography and d3-branes in Melvin universes. Phys. Rev. D73, 106009 (2006)
  23. Cai R.-G., Ohta N.: On the thermodynamics of large N non-commutative super Yang-Mills theory. Phys. Rev. D61, 124012 (2000)
  24. Halliday S., Szabo R.J.: Isometric embeddings and noncommutative branes in homogeneous gravitational waves. Class. Quant. Grav. 22, 1945–1990 (2005)
  25. Szabo R.J.: Symmetry, gravity and noncommutativity. Class. Quant. Grav. 23, R199–R242 (2006)
  26. Maldacena J.M., Ooguri H.: Strings in AdS(3) and SL(2,R) WZW model. I. J. Math. Phys. 42, 2929–2960 (2001)
  27. Teschner J.: On structure constants and fusion rules in the SL(2,C)/SU(2) WZNW model. Nucl. Phys. B546, 390–422 (1999)
  28. Bachas C., Petropoulos M.: JHEP 0102, 025 (2001)
  29. Bieliavsky P., Detournay S., Spindel P., Rooman M.: Star products on extended massive non-rotating BTZ black holes. JHEP 06, 031 (2004)
  30. Bieliavsky P.: Non-formal deformation quantizations of solvable Ricci-type symplectic symmetric spaces. J. Phys.: Conf. Ser. 103, 012001 (2008)
  31. Unterberger A. et J.: Quantification et analyse pseudo-différentielle. Ann. Scient. Ec. Norm. Sup. 4E série t. 21, 133–158 (1988)
  32. Unterberger A. et J.: La série discrète de SL(2,R) et les opérateurs pseudo-différentiels sur une demi-droite. Ann. Scient. Ec. Norm. Sup. 4E série t.17, 83–116 (1984)
  33. Weinstein A.: Traces and triangles in symmetric symplectic spaces. Contemp. Math. 179, 262–270 (1994)
  34. Klimek S., Lesniewski A.: Quantum Riemann surfaces. I. The unit disc. Commun. Math. Phys. 146(1), 103–122 (1992)
  35. Cahen M., Gutt S., Rawnsley J.: Quantization of Kähler manifolds. II. Trans. Amer. Math. Soc. 337(1), 73–98 (1993)
  36. Klimek S., Lesniewski A.: Quantum Riemann surfaces. II. The discrete series. Lett. Math. Phys. 24(2), 125–139 (1992)
  37. Hawkins E.: Quantization of multiply connected manifolds. Commun. Math. Phys. 255(3), 513–575 (2005)
  38. Natsume T., Nest R.: Topological approach to quantum surfaces. Commun. Math. Phys. 202(1), 65–87 (1999)
  39. Carey A., Hannabuss K., Mathai V., McCann P.: Quantum Hall effect on the hyperbolic plane. Commun. Math. Phys. 190(3), 629–673 (1998)
  40. Bieliavsky, P.: Espace symétriques symplectiques. PhD. thesis, ULB, 1995
  41. Kirillov, A.A.: Elementy teorii predstavleniĭ. (Russian) [Elements of the theory of representations] Moscow: Izdat. “Nauka”, 1972
  42. Kostant, B.: Quantization and unitary representations. In: Lectures in modern analysis and applications, III, Lecture Notes in Math., vol. 170, Berlin: Springer, 1970, pp. 87–208
  43. Helgason S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, Londen-NewYork (1978)
  44. Bieliavsky Pierre, Strict Quantization of Solvable Symmetric Spaces, 10.4310/jsg.2001.v1.n2.a4
  45. Bieliavsky P., Bonneau Ph., Maeda Y.: Universal deformation formulae, symplectic Lie groups and symmetric spaces. Pacific J. Math. 230(1), 41–57 (2007)
  46. Bieliavsky P., Bonneau Ph.: On the geometry of the characteristic class of a star product on a symplectic manifold. Rev. Math. Phys. 15(2), 199–215 (2003)
  47. Connes A., Flato M., Sternheimer D.: Closed star products and cyclic cohomology. Lett. Math. Phys. 24(1), 1–12 (1992)
  48. Watson G.N.: A treatise on the Theory of Bessel Function. Second edition. Cambridge Univ. Press, Cambridge (1966)
  49. Connes A., Moscovici H.: Rankin-Cohen brackets and the Hopf algebra of transverse geometry. Mosc. Math. J. 4(1), 111–130 (2004)
  50. Zagier, D.: Modular forms and differential operators. In: K. G. Ramanathan memorial issue, Proc. Indian Acad. Sci. Math. Sci. 104(1), 57–75 (1994)
  51. Bieliavsky P., Massar M.: Oscillatory integral formulae for left-invariant star products on a class of Lie groups. Lett. Math. Phys. 58, 115–128 (2001)