User menu

Mg2+ modulation of EMCV IRES key activity fragment equilibria and r(G center dot C) base-pair kinetics

Bibliographic reference Dupont, J. A. ; Snoussi, Karim. Mg2+ modulation of EMCV IRES key activity fragment equilibria and r(G center dot C) base-pair kinetics. In: Journal of Biological Physics : an international journal for the formulation and application of physical and mathematical models in the biological sciences, Vol. 35, no. 3, p. 231-243 (2009)
Permanent URL
  1. Van Der Velden, A., Kaminski, A., Jackson, R., Belsham, G.: Defective point mutants of the encephalomyocarditis virus internal ribosome entry site can be complemented in trans. Virology 214, 82–90 (1995). doi: 10.1006/viro.1995.9952
  2. Hoffman, M.A., Palmenberg, A.C.: Mutational analysis of the J-K stem-loop region of the encephalomyocarditis virus IRES. J. Virol. 69, 4399–4406 (1995)
  3. Witherell, G.W., Schultz-Witherell, C.S., Wimmer, E.: Cis-acting elements of the encephalomyocarditis virus internal ribosomal entry site. Virology 214, 660–663 (1995). doi: 10.1006/viro.1995.0081
  4. Roberts, L.O., Belsham, G.: Complementation of defective picornavirus internal ribosome entry site (IRES) elements by the co-expression of fragments of the IRES. Virology 227, 53–62 (1997). doi: 10.1006/viro.1996.8312
  5. Kolupaeva, V., Pestova, T., Hellen, C., Shatsky, I.: Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J. Biol. Chem. 273, 18599–18604 (1998). doi: 10.1074/jbc.273.29.18599
  6. Robertson, M., Seamons, R., Belsham, G.: A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5, 1167–1179 (1999). doi: 10.1017/S1355838299990301
  7. Fernandez-Miragall, O., Ramos, R., Ramajo, J., Martinez-Salas, E.: Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation. RNA 12, 223–234 (2006). doi: 10.1261/rna.2153206
  8. Phelan, M., Banks, R.J., Conn, G., Ramesh, V.: NMR studies of the structure and Mg2 +  binding properties of a conserved RNA motif of EMCV picornavirus IRES element. Nucleic Acids Res. 32, 4715–4724 (2004). doi: 10.1093/nar/gkh805
  9. Snoussi, K., Leroy, J.-L.: Alteration of AT base-pair opening kinetics by the ammonium cation in DNA A-tracts. Biochemistry 41, 12467–12474 (2002). doi: 10.1021/bi020184p
  10. Snoussi, K., Leroy, J.-L.: Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry 40, 8898–8904 (2001). doi: 10.1021/bi010385d
  11. Leroy, J.-L., Charretier, E., Kochoyan, M., Guéron, M.: Evidence from base-pair kinetics for two types of adenine tract structures in solution: their relation to DNA curvature. Biochemistry 27, 8894–8898 (1988). doi: 10.1021/bi00425a004
  12. Kochoyan, M., Leroy, J.-L., Guéron, M.: Processes of base-pair opening and proton exchange in Z-DNA. Biochemistry 29, 4799–4805 (1990). doi: 10.1021/bi00472a008
  13. Guéron, M., Leroy, J.-L.: Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol. 261, 383–413 (1995). doi: 10.1016/S0076-6879(95)61018-9
  14. Cantor, C.R., Warshaw, M.M., Shapiro, H.: Oligonucleotide interactions. III. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers 9, 1059–1077 (1970). doi: 10.1002/bip.1970.360090909
  15. Jucker, F.M., Heus, H.A., Yip, P.F., Moors, E.H.M., Pardi, A.: A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 264, 968–980 (1996). doi: 10.1006/jmbi.1996.0690
  16. Searle, M.S., William, D.H.: On the stability of nucleic acid structures in solution: enthalpy–entropy compensations, internal rotations and reversibility. Nucleic Acids Res. 21, 2051–2056 (1993). doi: 10.1093/nar/21.9.2051
  17. Hermann, T., Westhof, E.: Exploration of metal binding sites in RNA folds by Brownian-dynamics simulations. Structure 6, 1303–1314 (1998). doi: 10.1016/S0969-2126(98)00130-0
  18. Uhlenbeck, O.C.: Nucleic-acid structure tetraloops and RNA folding. Nature 20, 613–614 (1990). doi: 10.1038/346613a0
  19. Antao, V.P., Tinoco, I., Jr.: Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 20, 819–824 (1992). doi: 10.1093/nar/20.4.819
  20. Saenger Wolfram, Principles of Nucleic Acid Structure, ISBN:9780387907611, 10.1007/978-1-4612-5190-3
  21. Russell, R., Zhuang, X., Babcock, H.P., Millett, I.S., Doniach, S., Chu, S., Herschlag, D.: Channels in the folding landscape. Proc. Natl. Acad. Sci. U. S. A. 99, 155–160 (2002). doi: 10.1073/pnas.221593598