User menu

Subdiffusive behavior generated by irrational rotations

Bibliographic reference Huveneers, François. Subdiffusive behavior generated by irrational rotations. In: Ergodic Theory and Dynamical Systems, Vol. 29, p. 1217-1233 (2009)
Permanent URL
  1. Adamczewski Boris, Répartition des suites (nα)n∈Net substitutions, 10.4064/aa112-1-1
  2. Baladi Viviane, Positive Transfer Operators and Decay of Correlations, ISBN:9789810233280, 10.1142/3657
  3. Bricmont Jean, Gawędzki Krzysztof, Kupiainen Antti, KAM Theorem and Quantum Field Theory, 10.1007/s002200050573
  4. Bunimovich L. A., Sinai Ya. G., Statistical properties of lorentz gas with periodic configuration of scatterers, 10.1007/bf02046760
  5. Burton Robert, Denker Manfred, On the Central Limit Theorem for Dynamical Systems, 10.2307/2000864
  6. De La Rue, Theory Probab. Math. Statist., 57, 140 (1997)
  7. Dettmann C. P., 10.1023/a:1026477605331
  8. Drmota Michael, Tichy Robert F., Sequences, Discrepancies and Applications, ISBN:9783540626060, 10.1007/bfb0093404
  9. Gaspard P., Briggs M. E., Francis M. K., Sengers J. V., Gammon R. W., Dorfman J. R., Calabrese R. V., 10.1038/29721
  10. Hardy, An Introduction to the Theory of Numbers (1960)
  11. Herman Michael Robert, Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations, 10.1007/bf02684798
  12. Hofbauer Franz, Keller Gerhard, Ergodic properties of invariant measures for piecewise monotonic transformations, 10.1007/bf01215004
  13. Kuipers, Uniform Distribution of Sequences (1974)
  14. Liardet Pierre, Volný Dalibor, Sums of continuous and differentiable functions in dynamical systems, 10.1007/bf02937328